2017-02-28 14:39:54 +01:00
|
|
|
|
- require "base64"
|
|
|
|
|
~ "\xEF\xBB\xBF"
|
|
|
|
|
- def quellen opts
|
|
|
|
|
- etc = opts.key? :etc
|
|
|
|
|
- if etc
|
|
|
|
|
- opts.delete :etc
|
|
|
|
|
- etc = "\n<etc/>"
|
|
|
|
|
- else
|
|
|
|
|
- etc = ''
|
|
|
|
|
- "<quellen>#{opts.map {|k, v| "<quelle jahr=#{v}>#{k}</quelle>" }.join "\n"}#{etc}</quellen>"
|
2018-03-09 18:25:11 +01:00
|
|
|
|
- def link link
|
|
|
|
|
- "<a href=\"#{link}\">#{link}</a>"
|
2017-02-28 14:39:54 +01:00
|
|
|
|
- def import_data file
|
|
|
|
|
- mime_type = IO.popen(["file", "--brief", "--mime-type", file], in: :close, err: :close) { |io| io.read.chomp }
|
|
|
|
|
- content = Base64.urlsafe_encode64 File.read( file)
|
|
|
|
|
- "data:#{mime_type};base64,#{content}"
|
|
|
|
|
!!! 5
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%html(lang='en')
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%head
|
|
|
|
|
-#%meta(charset="utf-8")
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%title Decoding the sound of 'hardness' and 'darkness' as perceptual dimensions of music
|
2018-03-09 18:25:11 +01:00
|
|
|
|
-#%link(rel="stylesheet" href="fonts/Roboto.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/RobotoSlab.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/PT_Mono.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/PT_Sans.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/Vollkorn.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/Asset.css")
|
2017-02-28 14:39:54 +01:00
|
|
|
|
-#%link(rel="stylesheet" href="fonts/WithinDestruction.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/BlackDahlia.css")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
-#%link(rel="stylesheet" href="fonts/ThroughStruggleDEMO.css")
|
2017-02-28 14:39:54 +01:00
|
|
|
|
-#%link(rel="stylesheet" href="fonts/TheDefiler.css")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%link(rel="stylesheet" href="fonts/Cardo.css")
|
|
|
|
|
%link(rel="stylesheet" href="fonts/Italianno.css")
|
|
|
|
|
-#%link(rel="stylesheet" href="fonts/CinzelDecorative.css")
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%link(rel="stylesheet" href="style.css")
|
2017-09-06 23:13:13 +02:00
|
|
|
|
%meta(name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no")
|
|
|
|
|
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
|
|
|
|
%body
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%header(style="")
|
2018-07-12 17:58:23 +02:00
|
|
|
|
%figure.logos(style="margin-top:0.3cm")<>
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%img#tagungs-logo(style="float:right" src="files/icmpc15_logo.jpg")
|
|
|
|
|
%img#uni-logo(src="files/univie_logo.png")
|
|
|
|
|
-#%div(style="font-size:0.8em;margin-top:1.31cm")
|
2018-07-12 17:58:23 +02:00
|
|
|
|
44. Jahrestagung für Akustik
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%br<>
|
|
|
|
|
Technische Universität München
|
|
|
|
|
%br<>
|
2018-07-12 17:58:23 +02:00
|
|
|
|
19. März 2018 .. 22. März 2018
|
2018-03-09 18:25:11 +01:00
|
|
|
|
-#.grabstein
|
|
|
|
|
.grabstein-was DAGA
|
|
|
|
|
.grabstein-wo Technische Universität München
|
|
|
|
|
.grabstein-von ✦ 19. März 2018
|
|
|
|
|
.grabstein-bis ✝ 22. März 2018
|
2018-07-15 12:13:49 +02:00
|
|
|
|
-#%img(style="height:7cm;top:3cm;right:24cm;position:absolute" alt="Dunkle Nacht" src="files/Candle.png")
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%h1
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Decoding the sound of <q>hardness</q> and <q>darkness</q> as perceptual dimensions of music
|
2017-09-06 23:13:13 +02:00
|
|
|
|
%p#authors<>
|
2018-03-12 12:36:41 +01:00
|
|
|
|
%span.author(data-mark="1,2")<> Isabella Czedik-Eysenberg
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%span.author(data-mark="1")<> Christoph Reuter
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%span.author(data-mark="2")<> Denis Knauf
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p#institutions<>
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%span.institution(data-mark="1")<> University of Vienna, Austria
|
|
|
|
|
%span.institution(data-mark="2")<> Student at Technical University of Vienna, Austria
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
|
|
|
|
%main
|
2018-07-15 12:13:49 +02:00
|
|
|
|
#column1_1
|
|
|
|
|
%section#heavy_features
|
|
|
|
|
:markdown
|
|
|
|
|
Sound Features
|
|
|
|
|
==============
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Considering Bonferroni correction, 65 significant feature
|
|
|
|
|
correlations were found for the concept of <q>hardness</q>.
|
|
|
|
|
|
|
|
|
|
The characterizing attributes of <q>hardness</q> include high
|
|
|
|
|
tempo and sound density, less focus on clear melodic lines than
|
|
|
|
|
noise-like sounds and especially the occurrence of strong percussive
|
|
|
|
|
components.
|
2018-03-09 20:04:40 +01:00
|
|
|
|
%ol
|
|
|
|
|
%li
|
2018-07-15 12:13:49 +02:00
|
|
|
|
percussive energy / rhythmic density
|
|
|
|
|
%figure
|
|
|
|
|
%img(style="width:50%" src="files/sonagramm_blunt_log.png")
|
|
|
|
|
%img(style="width:50%" src="files/sonagramm_decap_log.png")
|
2018-03-09 20:04:40 +01:00
|
|
|
|
%li
|
2018-07-15 12:13:49 +02:00
|
|
|
|
dynamic distribution
|
|
|
|
|
%figure
|
|
|
|
|
%img(style="width:50%" src="files/blunt_envelope.png")
|
|
|
|
|
%img(style="width:50%" src="files/decap_envelope.png")
|
|
|
|
|
%figure
|
|
|
|
|
%img(style="width:50%" src="files/blunt_dyndist.png")
|
|
|
|
|
%img(style="width:50%" src="files/decap_dyndist.png")
|
2018-03-09 20:04:40 +01:00
|
|
|
|
%li
|
2018-07-15 12:13:49 +02:00
|
|
|
|
melodic content / harmonic entropy
|
|
|
|
|
%figure
|
|
|
|
|
%img(style="width:50%" src="files/blunt_chromagram.png")
|
|
|
|
|
%img(style="width:50%" src="files/decap_chromagram.png")
|
|
|
|
|
%section#heavy_model
|
|
|
|
|
%h1 Model
|
|
|
|
|
:markdown
|
|
|
|
|
Sequential feature selection
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-07-15 12:13:49 +02:00
|
|
|
|
* set of 5 features
|
|
|
|
|
* predictive linear regression model
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-07-15 12:13:49 +02:00
|
|
|
|
RMSE | 0.64
|
|
|
|
|
R-Squared | 0.80
|
|
|
|
|
MSE | 0.40
|
|
|
|
|
MAE | 0.49
|
|
|
|
|
r | 0.900
|
|
|
|
|
%figure
|
|
|
|
|
%img(src="scatter_hardness_model5.png")
|
|
|
|
|
%section#heavy_rater_agreement
|
|
|
|
|
:markdown
|
|
|
|
|
Rater Agreement
|
|
|
|
|
===============
|
|
|
|
|
|
|
|
|
|
Intraclass Correlation Coefficient (Two-Way Model, Consistency): <b>0.653</b>
|
|
|
|
|
|
|
|
|
|
#column1_2
|
|
|
|
|
-#%section#aims
|
|
|
|
|
%h1 Aims
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Based on computationally obtainable signal features, the creation
|
|
|
|
|
of models for the perceptual concepts of <q>hardness</q> and
|
|
|
|
|
<q>darkness</q> in music is aimed for. Furthermore it shall be
|
|
|
|
|
explored if there are interactions between the two factors and to
|
|
|
|
|
which extent it is possible to classify musical genres based on
|
|
|
|
|
these dimensions.
|
|
|
|
|
%section#method
|
|
|
|
|
%h1 Method
|
|
|
|
|
%figure.right(style="width:50%")
|
|
|
|
|
%img(src="files/LastFM.png")
|
|
|
|
|
:markdown
|
|
|
|
|
Based on last.fm listener statistics, 150 pieces of music were selected
|
|
|
|
|
from 10 different subgenres of metal, techno, gothic and pop music.
|
|
|
|
|
|
|
|
|
|
In an online listening test, 40 participants were asked to rate the
|
|
|
|
|
refrain of each example in terms of <q>hardness</q> and <q>darkness</q>.
|
|
|
|
|
These ratings served as a ground truth for examining the two
|
|
|
|
|
concepts using a machine learning approach:
|
|
|
|
|
|
|
|
|
|
Taking into account 230 features describing spectral distribution,
|
|
|
|
|
temporal and dynamic properties, relevant dimensions were
|
|
|
|
|
investigated and combined into models.
|
|
|
|
|
Predictors were trained using five-fold cross-validation.
|
|
|
|
|
%figure.right(style="width:50%")
|
|
|
|
|
%img(src="files/einhorn/diagramm_vorgang_english.png")
|
|
|
|
|
%section#data
|
|
|
|
|
%h1 Data
|
|
|
|
|
%figure.right(style="width:50%")
|
|
|
|
|
%img(src="files/scatter_hard_dark_dashedline_2017-09-05.png")
|
|
|
|
|
%section#hardness
|
|
|
|
|
%h1 Hardness
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-07-15 12:13:49 +02:00
|
|
|
|
<q>Hardness</q> is often considered a distinctive feature of (heavy)
|
|
|
|
|
metal music, as well as in genres like hardcore techno or <q>Neue
|
|
|
|
|
Deutsche Härte</q>.
|
|
|
|
|
In a previous investigation the concept of <q>hardness</q> in music
|
|
|
|
|
was examined in terms of its acoustic correlates and suitability as
|
|
|
|
|
a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
|
|
|
|
|
|
|
|
|
|
#column1_3
|
|
|
|
|
%section#darkness
|
|
|
|
|
%h1 Darkness
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Certain kinds of music are sometimes described as <q>dark</q> in a
|
|
|
|
|
metaphorical sense, especially in genres like gothic or doom metal.
|
|
|
|
|
According to musical adjective classifications <q>dark</q> is part
|
|
|
|
|
of the same cluster as <q>gloomy</q>, <q>sad</q> or
|
|
|
|
|
<q>depressing</q> #{quellen Hevner: 1936}, which was later adopted in
|
|
|
|
|
computational musical affect detection
|
|
|
|
|
#{quellen 'Li & Oghihara' => 2003}.
|
|
|
|
|
This would suggest the
|
|
|
|
|
relevance of sound attributes that correspond with the expression
|
|
|
|
|
of sadness, e.g. lower pitch, small pitch movement and <q>dark</q>
|
|
|
|
|
timbre #{quellen Huron: 2008}. In timbre research <q>brightness</q>
|
|
|
|
|
is often considered one of the central perceptual axes
|
|
|
|
|
#{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
|
|
|
|
|
question if <q>darkness</q> in music is also reflected as the
|
|
|
|
|
inverse of this timbral <q>brightness</q> concept.
|
|
|
|
|
%section#darkness_features
|
|
|
|
|
:markdown
|
|
|
|
|
Sound Features
|
|
|
|
|
==============
|
|
|
|
|
|
|
|
|
|
Considering Bonferroni correction, 35 significant feature
|
|
|
|
|
correlations were found for the <q>darkness</q> ratings.
|
|
|
|
|
|
|
|
|
|
While a suspected negative correlation with **timbral
|
|
|
|
|
<q>brightness</q>** cannot be confirmed, <q>darkness</q> appears to
|
|
|
|
|
be associated with a high **spectral complexity** and harmonic
|
|
|
|
|
traits like **major or minor mode**.
|
|
|
|
|
%figure
|
|
|
|
|
%img(src="files/scatter_spectral_centroid_essentia_darkness.png")
|
|
|
|
|
:markdown
|
|
|
|
|
Correlations between darkness rating and measures for brightness:
|
|
|
|
|
|
|
|
|
|
Feature | r | p
|
|
|
|
|
-----------------------|--------|----------
|
|
|
|
|
Spectral centroid | 0.3340 | <0.01
|
|
|
|
|
High frequency content | 0.1526 | 0.0631
|
|
|
|
|
%figure
|
|
|
|
|
%img(src="files/violin_keyEdma_darkMean_blaugelb.png")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%p
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Musical excerpts in minor mode were significantly rated as
|
|
|
|
|
<q>harder</q> than those in major mode. (<nobr>p < 0.01</nobr>
|
|
|
|
|
according to t-test)
|
|
|
|
|
%section#darkness_model
|
|
|
|
|
%h1 Model
|
|
|
|
|
%figure
|
|
|
|
|
%img(src="files/scatter_darkness_model8.png")
|
|
|
|
|
:markdown
|
|
|
|
|
Sequential feature selection:
|
|
|
|
|
|
|
|
|
|
* combination of 8 features
|
|
|
|
|
* predictive linear regression model
|
|
|
|
|
|
|
|
|
|
RMSE| 0.81
|
|
|
|
|
R-Squared| 0.60
|
|
|
|
|
MSE| 0.65
|
|
|
|
|
MAE| 0.64
|
|
|
|
|
r| 0.7978
|
|
|
|
|
%section#darkness_rater_agreement
|
|
|
|
|
:markdown
|
|
|
|
|
Rater Agreement
|
|
|
|
|
===============
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-07-15 12:13:49 +02:00
|
|
|
|
Intraclass Correlation Coefficient (Two-Way Model, Consistency):
|
|
|
|
|
**0.498**
|
|
|
|
|
|
|
|
|
|
%footer
|
|
|
|
|
%section#further_resultes_conclusion
|
|
|
|
|
:markdown
|
|
|
|
|
Further Results & Conclusions
|
|
|
|
|
=================================
|
|
|
|
|
|
|
|
|
|
Comparison
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
|
|
When comparing <q>darkness</q> and <q>hardness</q>, the results
|
|
|
|
|
indicate that the latter concept can be more efficiently described
|
|
|
|
|
and modeled by specific sound attributes:
|
|
|
|
|
|
|
|
|
|
* The consistency between ratings given by different raters is
|
|
|
|
|
higher for <q>hardness</q> (see Intraclass Correlation
|
|
|
|
|
Coefficients)
|
|
|
|
|
* For the <q>hardness</q> dimension, a model can be based on a more
|
|
|
|
|
compact set of features and at the same time leads to a better
|
|
|
|
|
prediction rate
|
|
|
|
|
|
|
|
|
|
Further application
|
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
|
|
Although a considerable linear relation
|
|
|
|
|
(<nobr>r = 0.65</nobr>, <nobr>p < 0.01</nobr>) is present between
|
|
|
|
|
the two dimensions within the studied dataset, the concepts prove to
|
|
|
|
|
be useful criteria for distinguishing music examples from different
|
|
|
|
|
genres.
|
|
|
|
|
|
|
|
|
|
E.g. a simple tree can be constructed for classification into broad
|
|
|
|
|
genre categories (Pop, Techno, Metal, Gothic) with an accuracy of
|
|
|
|
|
74%.
|
|
|
|
|
%img(src="files/predictionTree_genreAgg2.png")
|
|
|
|
|
%img(src="files/confusionMatrix_simpleTree_genreAgg2.png")
|
|
|
|
|
%section#conclusion
|
|
|
|
|
:markdown
|
|
|
|
|
Conclusion
|
|
|
|
|
==========
|
|
|
|
|
|
|
|
|
|
<q>Hardness</q> and <q>darkness</q> constitute perceptually relevant
|
|
|
|
|
dimensions for a high-level description of music. By decoding the
|
|
|
|
|
sound characteristics associated with these concepts, they can be
|
|
|
|
|
used for analyzing and indexing music collections and e.g. in a
|
|
|
|
|
decision tree for automatic genre prediction.
|
|
|
|
|
|
|
|
|
|
-#%section#ergebnisse1(style="height:96.35cm")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%h1 4. Ergebnisse
|
|
|
|
|
%figure.right(style="width:70%")
|
|
|
|
|
%img(alt='Verwelkter Mohn' src='files/violin_genre_darkMean.svg')
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-03-09 18:25:11 +01:00
|
|
|
|
Es zeigt sich ein Bezug zwischen dem Genre und der
|
|
|
|
|
durchschnittlichen Düsterkeitsbewertung der jeweiligen Stimuli.
|
|
|
|
|
%figure.right(style="width:35%")
|
|
|
|
|
%img(alt='Ernstes Indigo' src='files/scatter_spectral_centroid_essentia_darkness.svg')
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-03-09 18:25:11 +01:00
|
|
|
|
Eine Antiproportionalität zu klangfarblicher <q>Helligkeit</q> lässt
|
|
|
|
|
sich (mit der vorliegenden Messmethode) nicht nachweisen. Es liegt
|
|
|
|
|
im Gegenteil sogar eine leicht positive Korrelation vor –
|
|
|
|
|
womöglich u.a. bedingt durch erhöhte dissonante Klanganteile im
|
|
|
|
|
Hochfrequenzbereich (z.B. Schlagzeugvorkommen). Werden die
|
|
|
|
|
perkussiven Signalanteile zuvor ausgefiltert, verringert sich
|
|
|
|
|
dieser Effekt bereits deutlich.
|
2018-03-09 23:17:25 +01:00
|
|
|
|
%figure.nobrtd(style="width:24em")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
:markdown
|
|
|
|
|
Merkmal|r|p
|
|
|
|
|
---|---|---
|
|
|
|
|
Spectral Centroid|0,3340|< 0,0001
|
|
|
|
|
Hochfrequenzanteil (> 1500 Hz)|0,1526|0,0631
|
|
|
|
|
Spectral Centroid (harmonischer Teil)|0,2094|0,0101
|
|
|
|
|
Hochfrequenzanteil (harmonischer Teil)|0,1270|0,1215
|
|
|
|
|
{:.merkmale}
|
|
|
|
|
%figcaption
|
|
|
|
|
Korrelation der durchschnittlichen Düsterkeits<wbr/>bewertung mit Maßen
|
|
|
|
|
für klangfarbliche Helligkeit.
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-03-09 23:17:25 +01:00
|
|
|
|
.clear
|
|
|
|
|
%figure.left(style="width:41.1%")
|
|
|
|
|
%img(alt='Trauriges Purpur' src='files/violin_keyEdma_darkMean_blaugelb.svg')
|
|
|
|
|
|
|
|
|
|
%figure
|
|
|
|
|
%figure.right(style="width:12em")
|
|
|
|
|
%img(alt="lilien grau" src="files/meanspectra_10khz_600dpi.png")
|
|
|
|
|
%figure.right
|
|
|
|
|
:markdown
|
|
|
|
|
Merkmal|r|p
|
|
|
|
|
---|---|---
|
|
|
|
|
RMS Gammatone 1|- 0,3989|< 0,0001
|
|
|
|
|
RMS Gammatone 4|- 0,3427|< 0,0001
|
|
|
|
|
RMS Gammatone 5|- 0,3126|0,0001
|
|
|
|
|
{:.merkmale}
|
|
|
|
|
%p(style="clear:right")
|
2018-03-09 20:04:40 +01:00
|
|
|
|
Zwischen den 30 am düstersten bzw. am wenigsten düster bewerteten
|
|
|
|
|
Klangbeispielen zeigen sich charakteristische Unterschiede in der spektralen
|
|
|
|
|
Verteilung (insbesondere im Bereich der Gammatone-Filterbank-Bänder 1, 4 und 5).
|
|
|
|
|
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%p(style="clear:right")
|
|
|
|
|
Ein deutlicher Zusammenhang zeigt sich mit der Tonart der
|
|
|
|
|
jeweiligen Ausschnitte: Moll-Beispiele wurden im Durchschnitt als
|
|
|
|
|
düsterer bewertet als Stücke in Dur-Tonarten (<nobr>p < 0.0001</nobr> laut t-Test).
|
|
|
|
|
%p(style="clear:right")
|
|
|
|
|
Teilweise eher statische Tonchroma-Veränderungen im Fall der als
|
|
|
|
|
düster bewerteten Beispiele könnten die Theorie geringere
|
|
|
|
|
Tonhöhenbewegungen in Zusammenhang mit einem Ausdruck von Trauer
|
|
|
|
|
bestätigen (siehe z.B. Chromagramm <q><nobr>Sunn 0)))</nobr></q>).
|
|
|
|
|
%figure.right(style="width:58.2%")
|
|
|
|
|
%img(style="width:49%" alt='Schrumpeliges Gelb' src='files/chromagramm_sunn.svg')
|
|
|
|
|
%img(style="width:49%" alt='Vergängliches Weiß' src='files/chromagramm_abba.svg')
|
|
|
|
|
%p(style="clear:left;max-width: 50%")
|
|
|
|
|
Der stärkste Zusammenhang lässt sich zur Spectral Complexity
|
|
|
|
|
feststellen, welche die Komplexität des Signals in Bezug auf seine
|
|
|
|
|
Frequenzkomponenten anhand der Anzahl spektraler Peaks im Bereich
|
|
|
|
|
zwischen 100 Hz und 5 kHz beschreibt. Dies ist interessant mit den
|
|
|
|
|
Ergebnissen von #{quellen 'Laurier et al.' => 2010} in Bezug zu setzen,
|
|
|
|
|
welche beobachteten, dass <q>entspannte</q> (<q>relaxed</q>) Stücke eine
|
|
|
|
|
niedrigere spektrale Komplexität aufweisen, <q>fröhliche</q> (<q>happy</q>)
|
|
|
|
|
Stücke jedoch eine leicht höhere spektrale Komplexität als
|
|
|
|
|
<q>nicht fröhliche</q>.
|
2018-03-09 20:04:40 +01:00
|
|
|
|
%figure.left(style="width:59.83%;position:relative")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%img(alt='Totes Grün' src='files/scatter_model8_mit_beschriftung_gross.svg')
|
2018-03-09 20:04:40 +01:00
|
|
|
|
%img(alt="Farbiges Beispiel" style="width:5cm;opacity:0.7;position:absolute;top:0;left:3cm" src="files/bat.png")
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%p(style="clear:right")
|
|
|
|
|
Nach sequentieller Merkmalsauswahl wurden 8 Signaldeskriptoren zur
|
|
|
|
|
Bildung eines Modells zu Rate gezogen:
|
|
|
|
|
:markdown
|
|
|
|
|
Merkmal|r|p
|
|
|
|
|
----|----|----
|
|
|
|
|
Spectral Complexity (mean)| 0,6224| < 0,0001
|
|
|
|
|
HPCP Entropy (mean)| 0,5355| < 0,0001
|
|
|
|
|
Dynamic Complexity| - 0,4855| < 0,0001
|
|
|
|
|
Onset Rate| - 0,4837| < 0,0001
|
|
|
|
|
Pitch Salience| 0,4835| < 0,0001
|
|
|
|
|
MFCC 3 (mean)| 0,4657| < 0,0001
|
|
|
|
|
Spectral Centroid (mean)| 0,3340| < 0,0001
|
|
|
|
|
RMS Energy Gammatone 4| - 0,3427| < 0,0001
|
|
|
|
|
{:.merkmale}
|
2017-02-28 14:39:54 +01:00
|
|
|
|
%p
|
2018-03-09 18:25:11 +01:00
|
|
|
|
Anhand dieser wurde unter 5-facher Kreuzvalidierung ein lineares
|
|
|
|
|
Regressionsmodell zur Abschätzung der Düsterkeitsbewertung erstellt.
|
|
|
|
|
:markdown
|
|
|
|
|
Merkmal|Wert
|
|
|
|
|
----|----
|
|
|
|
|
Root-mean-squared error (RMSE)|0,81<span class="hidden">00</span>
|
|
|
|
|
Bestimmtheitsmaß (R<sup>2</sup>)|0,60<span class="hidden">00</span>
|
|
|
|
|
Mean Squared Error (MSE)|0,65<span class="hidden">00</span>
|
|
|
|
|
Mean Average Error (MAE)|0,64<span class="hidden">00</span>
|
|
|
|
|
Korrelation (insgesamt)|0,7978
|
|
|
|
|
{:.merkmale}
|
|
|
|
|
%div(style="clear:left")
|
|
|
|
|
.clear
|
2017-02-28 14:39:54 +01:00
|
|
|
|
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%section#references
|
2018-03-09 18:25:11 +01:00
|
|
|
|
-#(style="width:44.5%;display:inline-block;float:right")
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%h1 References
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%ul.literatur
|
|
|
|
|
%li
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%span.author Czedik-Eysenberg, I., Knauf, D., & Reuter, C.
|
|
|
|
|
%span.year 2017
|
|
|
|
|
%span.title <q>Hardness</q> as a semantic audio descriptor for music using automatic feature extraction
|
|
|
|
|
%span.herausgeber Gesellschaft für Informatik, Bonn
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%span.link
|
2018-07-15 12:13:49 +02:00
|
|
|
|
%a(href="https://doi.org/10.18420/in2017_06") https://doi.org/10.18420/in2017_06
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%li
|
|
|
|
|
%span.author Grey, J.M.
|
|
|
|
|
%span.year 1975
|
|
|
|
|
%span.title An Exploration of Musical Timbre
|
|
|
|
|
%span.herausgeber Stanford University, CCRMA Report No.STAN-M-2
|
|
|
|
|
%li
|
|
|
|
|
%span.author Li,T., Ogihara,M.
|
|
|
|
|
%span.year 2003
|
|
|
|
|
%span.title Detecting emotion in music
|
2018-03-12 12:36:41 +01:00
|
|
|
|
%nobr
|
|
|
|
|
%span.herausgeber 4th ISMIR Washington & Baltimore
|
|
|
|
|
%span.pages 239-240
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%li
|
|
|
|
|
%span.author Huron, D.
|
|
|
|
|
%span.year 2008
|
|
|
|
|
%span.title A comparison of average pitch height and interval size in major-and minor-key themes
|
2018-03-12 12:36:41 +01:00
|
|
|
|
%nobr
|
|
|
|
|
%span.herausgeber Empirical Musicology Review, 3
|
|
|
|
|
%span.pages 59-63
|
2018-03-09 18:25:11 +01:00
|
|
|
|
%li
|
|
|
|
|
%span.author Siddiq,S. et al.
|
|
|
|
|
%span.year 2014
|
|
|
|
|
%span.title Kein Raum für Klangfarben - Timbre Spaces im Vergleich
|
2018-03-12 12:36:41 +01:00
|
|
|
|
%nobr
|
|
|
|
|
%span.herausgeber 40. DAGA
|
|
|
|
|
%span.pages 56-57
|
2018-03-09 18:25:11 +01:00
|
|
|
|
.clear
|