pink edition.
This commit is contained in:
parent
947a22c2ff
commit
12c985471a
3 changed files with 301 additions and 155 deletions
52
brushed-metal.pink.svg
Normal file
52
brushed-metal.pink.svg
Normal file
|
@ -0,0 +1,52 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="841mm"
|
||||
height="1189mm"
|
||||
viewBox="0 0 2979.9213 4212.9921"
|
||||
version="1.1">
|
||||
<defs>
|
||||
<filter
|
||||
style="color-interpolation-filters:sRGB;"
|
||||
id="filter4686">
|
||||
<feTurbulence
|
||||
type="fractalNoise"
|
||||
numOctaves="3"
|
||||
baseFrequency="0.002 1"
|
||||
seed="0"
|
||||
result="result0" />
|
||||
<feColorMatrix
|
||||
result="result4"
|
||||
values="0"
|
||||
type="saturate" />
|
||||
<feComposite
|
||||
in="SourceGraphic"
|
||||
in2="result4"
|
||||
operator="arithmetic"
|
||||
k1="0.40000000000000002"
|
||||
k2="0.69999999999999996"
|
||||
k3="0.14999999999999999"
|
||||
result="result2"
|
||||
k4="0.050000000000000003" />
|
||||
<feBlend
|
||||
result="result5"
|
||||
mode="normal"
|
||||
in="result2"
|
||||
in2="SourceGraphic" />
|
||||
<feComposite
|
||||
in="result5"
|
||||
in2="SourceGraphic"
|
||||
operator="in"
|
||||
result="result3" />
|
||||
</filter>
|
||||
</defs>
|
||||
<g transform="translate(0,3160.6299)">
|
||||
<rect
|
||||
style="fill:#ff07ef;filter:url(#filter4686)"
|
||||
width="3054.7012"
|
||||
height="4283.0469"
|
||||
x="-16.162441"
|
||||
y="-3182.1973" />
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.3 KiB |
363
index.html.haml
363
index.html.haml
|
@ -15,10 +15,10 @@
|
|||
- content = Base64.urlsafe_encode64 File.read( file)
|
||||
- "data:#{mime_type};base64,#{content}"
|
||||
!!! 5
|
||||
%html(lang='de')
|
||||
%html(lang='en')
|
||||
%head
|
||||
-#%meta(charset="utf-8")
|
||||
%title “Düsterkeit” in der Musik: Physikalische Entsprechungen und Vorhersagemodelle
|
||||
%title Decoding the sound of 'hardness' and 'darkness' as perceptual dimensions of music
|
||||
-#%link(rel="stylesheet" href="fonts/Roboto.css")
|
||||
-#%link(rel="stylesheet" href="fonts/RobotoSlab.css")
|
||||
-#%link(rel="stylesheet" href="fonts/PT_Mono.css")
|
||||
|
@ -39,9 +39,9 @@
|
|||
%body
|
||||
%header(style="")
|
||||
%figure.logos(style="margin-top:0.3cm")<>
|
||||
%img#uni-logo(src="files/Uni_Logo_2016_ausschnitt.gif")
|
||||
%img#tagungs-logo(style="float:right" src="files/daga-2018-logo.png")
|
||||
%div(style="font-size:0.8em;margin-top:1.31cm")
|
||||
%img#tagungs-logo(style="float:right" src="files/icmpc15_logo.jpg")
|
||||
%img#uni-logo(src="files/univie_logo.png")
|
||||
-#%div(style="font-size:0.8em;margin-top:1.31cm")
|
||||
44. Jahrestagung für Akustik
|
||||
%br<>
|
||||
Technische Universität München
|
||||
|
@ -52,103 +52,230 @@
|
|||
.grabstein-wo Technische Universität München
|
||||
.grabstein-von ✦ 19. März 2018
|
||||
.grabstein-bis ✝ 22. März 2018
|
||||
%img(style="height:7cm;top:3cm;right:24cm;position:absolute" alt="Dunkle Nacht" src="files/Candle.png")
|
||||
-#%img(style="height:7cm;top:3cm;right:24cm;position:absolute" alt="Dunkle Nacht" src="files/Candle.png")
|
||||
%h1
|
||||
<q>Düsterkeit</q> in der Musik:
|
||||
-#%br<>
|
||||
Physikalische Entsprechungen und Vorhersagemodelle
|
||||
Decoding the sound of <q>hardness</q> and <q>darkness</q> as perceptual dimensions of music
|
||||
%p#authors<>
|
||||
%span.author(data-mark="1,2")<> Isabella Czedik-Eysenberg
|
||||
%span.author(data-mark="1")<> Christoph Reuter
|
||||
%span.author(data-mark="2")<> Denis Knauf
|
||||
%p#institutions<>
|
||||
%span.institution(data-mark="1")<> Institut für Musikwissenschaft, Universität Wien
|
||||
%span.institution(data-mark="2")<> Informatik, Technische Universität Wien
|
||||
%span.institution(data-mark="1")<> University of Vienna, Austria
|
||||
%span.institution(data-mark="2")<> Student at Technical University of Vienna, Austria
|
||||
|
||||
%main
|
||||
#column1
|
||||
%section#hintergrund
|
||||
%h1 1. Hintergrund
|
||||
%p
|
||||
Von Dowlands <q>Songs of Darkness</q> bis hin zu Genres wie Gothic oder
|
||||
Doom Metal ist <q>Düsterkeit</q> eine Dimension von Musik, die sich auch
|
||||
abseits melan-<jbr/>cholischer Texte im Klangbild niederschlagen kann.
|
||||
%p
|
||||
In musikalischen Adjektiv-Klassifikationen bildete der Begriff
|
||||
<q>düster</q> (<q>dark</q>) einen gemeinsamen Cluster mit Trauer-bezogenen
|
||||
Adjektiven (etwa <q>gloomy</q>, <q>sad</q>, <q>depressing</q>)
|
||||
#{quellen Hevner: 1936}.
|
||||
Jene Verknüpfung wurde auch in späteren Arbeiten zur automatisierten
|
||||
musikalischen Affektdetektion aufgegriffen #{quellen 'Li & Ogihara'=>2003}.
|
||||
Dies würde die Relevanz von Klangattributen,
|
||||
welche mit dem Ausdruck von Trauer assoziiert sind – etwa
|
||||
Moll-Tonarten oder auch tiefere Grundtonhöhen,
|
||||
geringe Melodiebewegungen und ein <q>düsteres</q> Timbre
|
||||
#{quellen Huron: 2008} – nahelegen.
|
||||
%p
|
||||
Von der Klangfarbenforschung ausgehend wird <q>Helligkeit</q> (messbar
|
||||
an der spektralen Verteilung eines Klanges) häufig als eine zentrale
|
||||
perzeptuelle Klangfarbendimension angesehen
|
||||
#{quellen 'Wedin & Goude'=>1972, Bismarck: 1974, Grey: 1975, 'Siddiq et al.'=>2014}.
|
||||
Dies wirft u.a. die Frage auf, ob es hierbei einen (umgekehrt
|
||||
proportionalen) Zusammenhang gibt, bzw. welche anderen
|
||||
zusätzlichen Faktoren zu einer klanglichen Düsterkeitsbewertung
|
||||
beitragen.
|
||||
#column1_1
|
||||
%section#heavy_features
|
||||
:markdown
|
||||
Sound Features
|
||||
==============
|
||||
|
||||
%section#fragestellung
|
||||
%h1 2. Fragestellungen und Ziele
|
||||
Considering Bonferroni correction, 65 significant feature
|
||||
correlations were found for the concept of <q>hardness</q>.
|
||||
|
||||
The characterizing attributes of <q>hardness</q> include high
|
||||
tempo and sound density, less focus on clear melodic lines than
|
||||
noise-like sounds and especially the occurrence of strong percussive
|
||||
components.
|
||||
%ol
|
||||
%li
|
||||
%p
|
||||
Wie lässt sich das Wahrnehmungskonzept klanglicher <q>Düsterkeit</q>
|
||||
anhand von Audiomerkmalen charakterisieren?
|
||||
percussive energy / rhythmic density
|
||||
%figure
|
||||
%img(style="width:50%" src="files/sonagramm_blunt_log.png")
|
||||
%img(style="width:50%" src="files/sonagramm_decap_log.png")
|
||||
%li
|
||||
%p
|
||||
Korreliert die empfundene klangliche <q>Düsterkeit</q> umgekehrt
|
||||
proportional mit klangfarblicher <q>Helligkeit</q>?
|
||||
dynamic distribution
|
||||
%figure
|
||||
%img(style="width:50%" src="files/blunt_envelope.png")
|
||||
%img(style="width:50%" src="files/decap_envelope.png")
|
||||
%figure
|
||||
%img(style="width:50%" src="files/blunt_dyndist.png")
|
||||
%img(style="width:50%" src="files/decap_dyndist.png")
|
||||
%li
|
||||
%p
|
||||
Ziel ist die Erstellung eines Modells zur automatischen Vorhersage
|
||||
der wahrgenommenen <q>Düsterkeit</q> von Musikstücken.
|
||||
melodic content / harmonic entropy
|
||||
%figure
|
||||
%img(style="width:50%" src="files/blunt_chromagram.png")
|
||||
%img(style="width:50%" src="files/decap_chromagram.png")
|
||||
%section#heavy_model
|
||||
%h1 Model
|
||||
:markdown
|
||||
Sequential feature selection
|
||||
|
||||
%section#methoden
|
||||
%h1 3. Methoden
|
||||
%p
|
||||
150 Musikbeispiele aus 10 unterschiedlichen Subgenres der Bereiche
|
||||
Metal, Techno, Gothic und Pop wurden anhand von Hörerstatistiken
|
||||
der Internetplattform LastFM selektiert. Die Refrains dieser
|
||||
Stücke wurden 40 Versuchspersonen zur Bewertung dargeboten, um
|
||||
eine Ground Truth für die Wahrnehmung der <q>Düsterkeit</q> von
|
||||
Musikbeispielen zu erheben. Unter Einsatz von Essentia
|
||||
#{quellen 'Bogdanov et al.'=> 2013}, MIRtoolbox
|
||||
#{quellen 'Lartillot & Toiviainen'=> 2007},
|
||||
Loudness Toolbox #{quellen Genesis: 2009} und TSM Toolbox
|
||||
#{quellen 'Driedger & Müller'=>2014} wurden 230
|
||||
Signaleigenschaften über die spektrale Verteilung, zeitliche und
|
||||
dynamische Klangfaktoren gewonnen. Diese wurden mittels Machine
|
||||
Learning-Verfahren unter Kreuzvalidierung ausgewertet und kombiniert,
|
||||
um auf Basis der Hörversuchsdaten Vorhersagemodelle zu erstellen.
|
||||
* set of 5 features
|
||||
* predictive linear regression model
|
||||
|
||||
%section#schlussfolgerungen
|
||||
-#(style="width:44.5%;display:inline-block;float:left")
|
||||
%h1 5. Diskussion/Schlussfolgerungen
|
||||
%p
|
||||
Es konnte anhand von Audiomerkmalen ein Modell zur Vorhersage
|
||||
einer Bewertung musikalischer Düsterkeit aufgestellt werden
|
||||
<nobr>(Korrelation r = 0,80, p < 0,01)</nobr>.
|
||||
%p
|
||||
Eine Antiproportionalität mit klangfarblicher Helligkeit ließ sich
|
||||
mit gängigen Maßen hierfür nicht nachweisen.
|
||||
%p
|
||||
Eine Gleichsetzung mit <q>traurig</q> scheint nicht 1:1 möglich zu sein,
|
||||
sehr wohl finden sich aber starke Zusammenhänge (etwa Moll-Harmonik).
|
||||
%p
|
||||
Das Konzept soll in folgenden Untersuchungen genauer in Hinblick
|
||||
auf das Interrater-Agreement und den Zusammenhang zu anderen
|
||||
Wahrnehmungskonzepten betrachtet werden.
|
||||
RMSE | 0.64
|
||||
R-Squared | 0.80
|
||||
MSE | 0.40
|
||||
MAE | 0.49
|
||||
r | 0.900
|
||||
%figure
|
||||
%img(src="scatter_hardness_model5.png")
|
||||
%section#heavy_rater_agreement
|
||||
:markdown
|
||||
Rater Agreement
|
||||
===============
|
||||
|
||||
#column2
|
||||
%section#ergebnisse1(style="height:96.35cm")
|
||||
Intraclass Correlation Coefficient (Two-Way Model, Consistency): <b>0.653</b>
|
||||
|
||||
#column1_2
|
||||
-#%section#aims
|
||||
%h1 Aims
|
||||
%p
|
||||
Based on computationally obtainable signal features, the creation
|
||||
of models for the perceptual concepts of <q>hardness</q> and
|
||||
<q>darkness</q> in music is aimed for. Furthermore it shall be
|
||||
explored if there are interactions between the two factors and to
|
||||
which extent it is possible to classify musical genres based on
|
||||
these dimensions.
|
||||
%section#method
|
||||
%h1 Method
|
||||
%figure.right(style="width:50%")
|
||||
%img(src="files/LastFM.png")
|
||||
:markdown
|
||||
Based on last.fm listener statistics, 150 pieces of music were selected
|
||||
from 10 different subgenres of metal, techno, gothic and pop music.
|
||||
|
||||
In an online listening test, 40 participants were asked to rate the
|
||||
refrain of each example in terms of <q>hardness</q> and <q>darkness</q>.
|
||||
These ratings served as a ground truth for examining the two
|
||||
concepts using a machine learning approach:
|
||||
|
||||
Taking into account 230 features describing spectral distribution,
|
||||
temporal and dynamic properties, relevant dimensions were
|
||||
investigated and combined into models.
|
||||
Predictors were trained using five-fold cross-validation.
|
||||
%figure.right(style="width:50%")
|
||||
%img(src="files/einhorn/diagramm_vorgang_english.png")
|
||||
%section#data
|
||||
%h1 Data
|
||||
%figure.right(style="width:50%")
|
||||
%img(src="files/scatter_hard_dark_dashedline_2017-09-05.png")
|
||||
%section#hardness
|
||||
%h1 Hardness
|
||||
%p
|
||||
<q>Hardness</q> is often considered a distinctive feature of (heavy)
|
||||
metal music, as well as in genres like hardcore techno or <q>Neue
|
||||
Deutsche Härte</q>.
|
||||
In a previous investigation the concept of <q>hardness</q> in music
|
||||
was examined in terms of its acoustic correlates and suitability as
|
||||
a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
|
||||
|
||||
#column1_3
|
||||
%section#darkness
|
||||
%h1 Darkness
|
||||
%p
|
||||
Certain kinds of music are sometimes described as <q>dark</q> in a
|
||||
metaphorical sense, especially in genres like gothic or doom metal.
|
||||
According to musical adjective classifications <q>dark</q> is part
|
||||
of the same cluster as <q>gloomy</q>, <q>sad</q> or
|
||||
<q>depressing</q> #{quellen Hevner: 1936}, which was later adopted in
|
||||
computational musical affect detection
|
||||
#{quellen 'Li & Oghihara' => 2003}.
|
||||
This would suggest the
|
||||
relevance of sound attributes that correspond with the expression
|
||||
of sadness, e.g. lower pitch, small pitch movement and <q>dark</q>
|
||||
timbre #{quellen Huron: 2008}. In timbre research <q>brightness</q>
|
||||
is often considered one of the central perceptual axes
|
||||
#{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
|
||||
question if <q>darkness</q> in music is also reflected as the
|
||||
inverse of this timbral <q>brightness</q> concept.
|
||||
%section#darkness_features
|
||||
:markdown
|
||||
Sound Features
|
||||
==============
|
||||
|
||||
Considering Bonferroni correction, 35 significant feature
|
||||
correlations were found for the <q>darkness</q> ratings.
|
||||
|
||||
While a suspected negative correlation with **timbral
|
||||
<q>brightness</q>** cannot be confirmed, <q>darkness</q> appears to
|
||||
be associated with a high **spectral complexity** and harmonic
|
||||
traits like **major or minor mode**.
|
||||
%figure
|
||||
%img(src="files/scatter_spectral_centroid_essentia_darkness.png")
|
||||
:markdown
|
||||
Correlations between darkness rating and measures for brightness:
|
||||
|
||||
Feature | r | p
|
||||
-----------------------|--------|----------
|
||||
Spectral centroid | 0.3340 | <0.01
|
||||
High frequency content | 0.1526 | 0.0631
|
||||
%figure
|
||||
%img(src="files/violin_keyEdma_darkMean_blaugelb.png")
|
||||
%p
|
||||
Musical excerpts in minor mode were significantly rated as
|
||||
<q>harder</q> than those in major mode. (<nobr>p < 0.01</nobr>
|
||||
according to t-test)
|
||||
%section#darkness_model
|
||||
%h1 Model
|
||||
%figure
|
||||
%img(src="files/scatter_darkness_model8.png")
|
||||
:markdown
|
||||
Sequential feature selection:
|
||||
|
||||
* combination of 8 features
|
||||
* predictive linear regression model
|
||||
|
||||
RMSE| 0.81
|
||||
R-Squared| 0.60
|
||||
MSE| 0.65
|
||||
MAE| 0.64
|
||||
r| 0.7978
|
||||
%section#darkness_rater_agreement
|
||||
:markdown
|
||||
Rater Agreement
|
||||
===============
|
||||
|
||||
Intraclass Correlation Coefficient (Two-Way Model, Consistency):
|
||||
**0.498**
|
||||
|
||||
%footer
|
||||
%section#further_resultes_conclusion
|
||||
:markdown
|
||||
Further Results & Conclusions
|
||||
=================================
|
||||
|
||||
Comparison
|
||||
----------
|
||||
|
||||
When comparing <q>darkness</q> and <q>hardness</q>, the results
|
||||
indicate that the latter concept can be more efficiently described
|
||||
and modeled by specific sound attributes:
|
||||
|
||||
* The consistency between ratings given by different raters is
|
||||
higher for <q>hardness</q> (see Intraclass Correlation
|
||||
Coefficients)
|
||||
* For the <q>hardness</q> dimension, a model can be based on a more
|
||||
compact set of features and at the same time leads to a better
|
||||
prediction rate
|
||||
|
||||
Further application
|
||||
-------------------
|
||||
|
||||
Although a considerable linear relation
|
||||
(<nobr>r = 0.65</nobr>, <nobr>p < 0.01</nobr>) is present between
|
||||
the two dimensions within the studied dataset, the concepts prove to
|
||||
be useful criteria for distinguishing music examples from different
|
||||
genres.
|
||||
|
||||
E.g. a simple tree can be constructed for classification into broad
|
||||
genre categories (Pop, Techno, Metal, Gothic) with an accuracy of
|
||||
74%.
|
||||
%img(src="files/predictionTree_genreAgg2.png")
|
||||
%img(src="files/confusionMatrix_simpleTree_genreAgg2.png")
|
||||
%section#conclusion
|
||||
:markdown
|
||||
Conclusion
|
||||
==========
|
||||
|
||||
<q>Hardness</q> and <q>darkness</q> constitute perceptually relevant
|
||||
dimensions for a high-level description of music. By decoding the
|
||||
sound characteristics associated with these concepts, they can be
|
||||
used for analyzing and indexing music collections and e.g. in a
|
||||
decision tree for automatic genre prediction.
|
||||
|
||||
-#%section#ergebnisse1(style="height:96.35cm")
|
||||
%h1 4. Ergebnisse
|
||||
%figure.right(style="width:70%")
|
||||
%img(alt='Verwelkter Mohn' src='files/violin_genre_darkMean.svg')
|
||||
|
@ -253,65 +380,22 @@
|
|||
%div(style="clear:left")
|
||||
.clear
|
||||
|
||||
%footer
|
||||
%section#literatur
|
||||
%section#references
|
||||
-#(style="width:44.5%;display:inline-block;float:right")
|
||||
%h1 6. Literatur
|
||||
%h1 References
|
||||
%ul.literatur
|
||||
%li
|
||||
%span.author Bismarck, G. v.
|
||||
%span.year 1974
|
||||
%span.title Sharpness as an attribute of the timbre of steady sounds
|
||||
%nobr
|
||||
%span.book Acta Acustica united with Acustica 30.3
|
||||
%span.pages 159–172
|
||||
%li
|
||||
%span.author Bogdanov, D., Wack N., Gómez E., Gulati S., Herrera P., Mayor O., et al.
|
||||
%span.year 2013
|
||||
%span.title ESSENTIA: an Audio Analysis Library for Music Information Retrieval
|
||||
%nobr
|
||||
%span.herausgeber International Society for Music Information Retrieval Conference (ISMIR'13)
|
||||
%span.pages 493-498
|
||||
%li
|
||||
%span.author Driedger, J. & Müller, M.
|
||||
%span.year 2014
|
||||
%span.title TSM Toolbox: MATLAB Implementations of Time-Scale Modification Algorithms
|
||||
%span.herausgeber Proc. of the International Conference on Digital Audio Effects
|
||||
%li
|
||||
%span.author Genesis
|
||||
%span.year 2009
|
||||
%span.title Loudness toolbox
|
||||
%span.author Czedik-Eysenberg, I., Knauf, D., & Reuter, C.
|
||||
%span.year 2017
|
||||
%span.title <q>Hardness</q> as a semantic audio descriptor for music using automatic feature extraction
|
||||
%span.herausgeber Gesellschaft für Informatik, Bonn
|
||||
%span.link
|
||||
%a(href="http://www.genesis-acoustics.com/en/index.php?page=32")
|
||||
http://www.genesis-acoustics.com/en/index.php?page=32
|
||||
%a(href="https://doi.org/10.18420/in2017_06") https://doi.org/10.18420/in2017_06
|
||||
%li
|
||||
%span.author Grey, J.M.
|
||||
%span.year 1975
|
||||
%span.title An Exploration of Musical Timbre
|
||||
%span.herausgeber Stanford University, CCRMA Report No.STAN-M-2
|
||||
%li
|
||||
%span.author Hevner, K.
|
||||
%span.year 1936
|
||||
%span.title Experimental studies of the elements of expression in music
|
||||
%nobr
|
||||
%span.herausgeber The American Journal of Psychology, 48(2)
|
||||
%span.pages 246-268
|
||||
%li
|
||||
%span.author Lartillot, O., & Toiviainen, P.
|
||||
%span.year 2007
|
||||
%span.title A Matlab toolbox for musical feature extraction from audio
|
||||
%nobr
|
||||
%span.herausgeber International Conference on Digital Audio Effects, Bordeaux
|
||||
%span.pages 237-244
|
||||
%li
|
||||
%span.author Laurier, C., Meyers, O., Serrà, J., Blech, M., Herrera, P., & Serra, X.
|
||||
%span.year 2010
|
||||
%span.title Indexing music by mood: Design and integration of an automatic content-based annotator
|
||||
%nobr
|
||||
%span.herausgeber Multimedia Tools and Applications, 48(1)
|
||||
%span.pages 161-184
|
||||
%span.link
|
||||
%a(href="http://dx.doi.org/10.1007/s11042-009-0360-2") http://dx.doi.org/10.1007/s11042-009-0360-2
|
||||
%li
|
||||
%span.author Li,T., Ogihara,M.
|
||||
%span.year 2003
|
||||
|
@ -333,11 +417,4 @@
|
|||
%nobr
|
||||
%span.herausgeber 40. DAGA
|
||||
%span.pages 56-57
|
||||
%li
|
||||
%span.author Wedin, L. & Goude, G.
|
||||
%span.year 1972
|
||||
%span.title Dimension analysis of the perception of instrumental timbre
|
||||
%nobr
|
||||
%span.herausgeber Scandinavian Journal of Psychology 13.1
|
||||
%span.pages 228–240
|
||||
.clear
|
||||
|
|
41
style.scss
41
style.scss
|
@ -144,6 +144,7 @@ footer {
|
|||
body {
|
||||
margin: 0;
|
||||
background: url(files/marble_black.png); //url(brushed-metal.new.svg);
|
||||
background: url(brushed-metal.pink.svg);
|
||||
color: #565655;
|
||||
font-family: "Cardo";
|
||||
}
|
||||
|
@ -182,7 +183,8 @@ section {
|
|||
|
||||
&::before {
|
||||
z-index: -1;
|
||||
background: linear-gradient( rgba(44, 58, 41, 0.8) 2.2rem, rgba(256, 256, 256, 0.8) 2.3rem );
|
||||
//background: linear-gradient( rgba(44, 58, 41, 0.8) 2.2rem, rgba(256, 256, 256, 0.8) 2.3rem );
|
||||
background: linear-gradient( rgba(49, 206, 15, 0.8) 2.2rem, rgba(256, 256, 256, 0.8) 2.3rem );
|
||||
content: "";
|
||||
//border-radius: 2rem 2rem 0.5rem 0.5rem;
|
||||
position: absolute;
|
||||
|
@ -199,7 +201,7 @@ section {
|
|||
//border-bottom: 0.3rem solid black
|
||||
//border-radius: 0.18rem 1.68rem 0 0
|
||||
font-size: 1.8rem;
|
||||
color: white;
|
||||
color: orange;
|
||||
line-height: normal;
|
||||
text-align: center;
|
||||
font-family: "Italianno";
|
||||
|
@ -245,7 +247,8 @@ quellen {
|
|||
}
|
||||
}
|
||||
|
||||
#column1, #column2 {
|
||||
#column1_1, #column1_2, #column1_3,
|
||||
#column2_1, #column2_2 {
|
||||
display: inline-block;
|
||||
box-sizing: border-box;
|
||||
margin: 0;
|
||||
|
@ -265,16 +268,29 @@ quellen {
|
|||
}
|
||||
}
|
||||
|
||||
#column1 {
|
||||
width: 32%;
|
||||
padding-right: 0.5em;
|
||||
#column1_1 {
|
||||
width: 33%;
|
||||
//padding-right: 0.5em;
|
||||
}
|
||||
|
||||
#column2 {
|
||||
float: right;
|
||||
padding-left: 0.7em;
|
||||
margin-left: -0.5em;
|
||||
width: 68%;
|
||||
#column1_2 {
|
||||
//float: right;
|
||||
//padding-left: 0.7em;
|
||||
//margin-left: -0.5em;
|
||||
width: 33%;
|
||||
}
|
||||
#column1_3 {
|
||||
//float: right;
|
||||
//padding-left: 0.7em;
|
||||
//margin-left: -0.5em;
|
||||
width: 33%;
|
||||
}
|
||||
|
||||
#column2_1 {
|
||||
width: 49%;
|
||||
}
|
||||
#column2_2 {
|
||||
width: 49%;
|
||||
}
|
||||
|
||||
.logos {
|
||||
|
@ -320,7 +336,8 @@ quellen {
|
|||
}
|
||||
|
||||
q {
|
||||
quotes: "„" "“";
|
||||
//quotes: "„" "“";
|
||||
quotes: "‘" "’";
|
||||
}
|
||||
|
||||
h1 {
|
||||
|
|
Loading…
Add table
Reference in a new issue