This patch restores the original behaviour of Cooja when
the transmitted packet is correct (which is true in a vast majority
of cases).
In case of a wrong outgoing packet (wrong length, wrong preamble)
the transmission will end when the radio changes its state (which
should always happen after transmitting a packet).
Benchmarks with RPL (33 runs, 50 nodes, 3 hours of simulated time each)
yield the same results (PDR, delay, number of transmitted packets)
as with the unmodified Cooja.
The packet converter used to generate packets of length zero
when it encountered errors during conversion. This caused
exceptions in packet analyzers.
Now the converter returns null in case of error. Appropriate
checks have been added to the code that uses the return value.
Due to errors in mspsim and/or radio drivers, packets of incorrect
length are sometimes transmitted. The length might be larger than
the 127-byte maximum (considered negative in the current code)
or not matching the actual number of transmitted bytes.
This leads to wrong packet delimiting when converting from
the mspsim-level stream of bytes to Cooja-level packets
causing unhandled exceptions that terminate the simulation.
This patch checks the frame preamble (0000007A) and the length field.
If they are wrong, no decoding attempt is done.
The transmitted bytes are still delivered to the receivers untouched.
The connection is terminated when the radio state is changed (which alway
s happens when TX is done).
Only the interrupt flags that have been handled must be cleared.
Otherwise, if a new interrupt occurs after the interrupt statuses are
read and before they are cleared, then it is discarded without having
been handled. This issue was particularly likely with two interrupt
trigger conditions occurring on different pins of the same port in a
short period of time.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Power-up interrupts do not always update the regular interrupt status.
Because of that, in order not to miss power-up interrupts, the ISR must
handle both the regular and the power-up interrupt statuses.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Introduce new useful GPIO macros to:
- get the raw interrupt status of a port,
- get the masked interrupt status of a port,
- get the power-up interrupt status of a port.
These macros are cleaner and less error-prone than raw register access
code copied all over the place.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Behave just like the CS8900A driver: Both the CS8900A and the LAN91C96 dynamically share a buffer for received packets and packets to be send. If the chip is exposed to a network with a lot of broadcasts the shared buffer might fill quicker with received packets than the 6502 reads them (via polling). So we might need to drop some received packets in order to be able to send anything at all.
ipv4/uip.c will not even be include in the list of sources in the first place if we are building with NETSTACK_CONF_WITH_IPV6 (CONTIKI_WITH_IPV6). Thus, there is no longer a need to wrap the entire source code in an #if guard.
Closes#935
OR-ing an offset to a base address instead of adding it is dangerous
because it can only work if the base address is aligned enough for the
offset.
Moreover, if the base address or the offset has a value unknown at
compile time, then the assembly instructions dedicated to 'base +
offset' addressing on most CPUs can't be emitted by the compiler because
this would require the alignment of the base address against the offset
to be known in order to optimize 'base | offset' into 'base + offset'.
In that case, the compiler has to emit more instructions in order to
compute 'base | offset' on most CPUs, e.g. on ARM, which means larger
binary size and slower execution.
Hence, replace all occurrences of 'base | offset' with 'base + offset'.
This must become a coding rule.
Here are the results for the cc2538-demo example:
- Compilation of uart_init():
* before:
REG(regs->base | UART_CC) = 0;
200b78: f446 637c orr.w r3, r6, #4032 ; 0xfc0
200b7c: f043 0308 orr.w r3, r3, #8
200b80: 2200 movs r2, #0
200b82: 601a str r2, [r3, #0]
* now:
REG(regs->base + UART_CC) = 0;
200b7a: 2300 movs r3, #0
200b7c: f8c4 3fc8 str.w r3, [r4, #4040] ; 0xfc8
- Size of the .text section:
* before: 0x4c7c
* now: 0x4c28
* saved: 84 bytes
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Several platforms defined compressions modes values:
SICSLOWPAN_CONF_COMPRESSION_IPV6
SICSLOWPAN_CONF_COMPRESSION_HC1
SICSLOWPAN_CONF_COMPRESSION_HC01
instead of using the global SICSLOWPAN_COMPRESSION_LEVEL definitions