aufteilung, schlechte bilder.
144
brushed-metal.dark.svg
Normal file
|
@ -0,0 +1,144 @@
|
||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="841mm"
|
||||||
|
height="1189mm"
|
||||||
|
viewBox="0 0 2979.9213 4212.9921"
|
||||||
|
id="svg2"
|
||||||
|
version="1.1"
|
||||||
|
inkscape:version="0.91 r13725"
|
||||||
|
sodipodi:docname="brushed-metal.dark.svg">
|
||||||
|
<defs
|
||||||
|
id="defs4">
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
id="linearGradient5938">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#000000;stop-opacity:1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop5940" />
|
||||||
|
<stop
|
||||||
|
style="stop-color:#000000;stop-opacity:0;"
|
||||||
|
offset="1"
|
||||||
|
id="stop5942" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
id="linearGradient4468"
|
||||||
|
osb:paint="gradient">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#252220;stop-opacity:1"
|
||||||
|
offset="0"
|
||||||
|
id="stop4470" />
|
||||||
|
<stop
|
||||||
|
style="stop-color:#252220;stop-opacity:0;"
|
||||||
|
offset="1"
|
||||||
|
id="stop4472" />
|
||||||
|
</linearGradient>
|
||||||
|
<filter
|
||||||
|
inkscape:label="Film Grain"
|
||||||
|
inkscape:menu="Image Effects"
|
||||||
|
inkscape:menu-tooltip="Adds a small scale graininess"
|
||||||
|
style="color-interpolation-filters:sRGB;"
|
||||||
|
id="filter4686">
|
||||||
|
<feTurbulence
|
||||||
|
type="fractalNoise"
|
||||||
|
numOctaves="3"
|
||||||
|
baseFrequency="0.002 1"
|
||||||
|
seed="0"
|
||||||
|
result="result0"
|
||||||
|
id="feTurbulence4688" />
|
||||||
|
<feColorMatrix
|
||||||
|
result="result4"
|
||||||
|
values="0"
|
||||||
|
type="saturate"
|
||||||
|
id="feColorMatrix4690" />
|
||||||
|
<feComposite
|
||||||
|
in="SourceGraphic"
|
||||||
|
in2="result4"
|
||||||
|
operator="arithmetic"
|
||||||
|
k1="0.40000000000000002"
|
||||||
|
k2="0.69999999999999996"
|
||||||
|
k3="0.14999999999999999"
|
||||||
|
result="result2"
|
||||||
|
id="feComposite4692"
|
||||||
|
k4="0.050000000000000003" />
|
||||||
|
<feBlend
|
||||||
|
result="result5"
|
||||||
|
mode="normal"
|
||||||
|
in="result2"
|
||||||
|
in2="SourceGraphic"
|
||||||
|
id="feBlend4694" />
|
||||||
|
<feComposite
|
||||||
|
in="result5"
|
||||||
|
in2="SourceGraphic"
|
||||||
|
operator="in"
|
||||||
|
result="result3"
|
||||||
|
id="feComposite4696" />
|
||||||
|
</filter>
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient5938"
|
||||||
|
id="linearGradient5944"
|
||||||
|
x1="1015.5103"
|
||||||
|
y1="-943.53088"
|
||||||
|
x2="2004.254"
|
||||||
|
y2="-945.79633"
|
||||||
|
gradientUnits="userSpaceOnUse" />
|
||||||
|
</defs>
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="0.7"
|
||||||
|
inkscape:cx="1497.8194"
|
||||||
|
inkscape:cy="2020.9878"
|
||||||
|
inkscape:document-units="px"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
objecttolerance="20"
|
||||||
|
inkscape:window-width="1366"
|
||||||
|
inkscape:window-height="729"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="23"
|
||||||
|
inkscape:window-maximized="1"
|
||||||
|
inkscape:object-paths="false" />
|
||||||
|
<metadata
|
||||||
|
id="metadata7">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,3160.6299)">
|
||||||
|
<rect
|
||||||
|
style="fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2;stroke-linecap:round;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;filter:url(#filter4686);fill:url(#linearGradient5944)"
|
||||||
|
id="rect4136"
|
||||||
|
width="3054.7012"
|
||||||
|
height="4283.0469"
|
||||||
|
x="-16.162441"
|
||||||
|
y="-3182.1973" />
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 4.1 KiB |
BIN
files/LastFM.png
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
files/blunt_chromagram.png
Normal file
After Width: | Height: | Size: 21 KiB |
BIN
files/blunt_dyndist.png
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
files/blunt_envelope.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
files/confusionMatrix_simpleTree_genreAgg2.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
files/decap_chromagram.png
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
files/decap_dyndist.png
Normal file
After Width: | Height: | Size: 9.4 KiB |
BIN
files/decap_envelope.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
files/diagramm_vorgang_english.png
Normal file
After Width: | Height: | Size: 121 KiB |
BIN
files/icmpc15_logo.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
files/icmpc15_logo.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
files/predictionTree_genreAgg2.png
Normal file
After Width: | Height: | Size: 7.8 KiB |
BIN
files/scatter_darkness_model8.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
files/scatter_hard_dark_dashedline_2017-09-05.png
Normal file
After Width: | Height: | Size: 103 KiB |
BIN
files/scatter_hardness_model5.png
Normal file
After Width: | Height: | Size: 94 KiB |
BIN
files/scatter_spectral_centroid_essentia_darkness.png
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
files/sonagramm_blunt_log.png
Normal file
After Width: | Height: | Size: 92 KiB |
BIN
files/sonagramm_decap_log.png
Normal file
After Width: | Height: | Size: 92 KiB |
BIN
files/univie_logo.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
files/violin_keyEdma_darkMean_blaugelb.png
Normal file
After Width: | Height: | Size: 426 KiB |
328
index.html.haml
|
@ -1,5 +1,4 @@
|
||||||
- require "base64"
|
- require "base64"
|
||||||
~ "\xEF\xBB\xBF"
|
|
||||||
- def quellen opts
|
- def quellen opts
|
||||||
- etc = opts.key? :etc
|
- etc = opts.key? :etc
|
||||||
- if etc
|
- if etc
|
||||||
|
@ -14,6 +13,7 @@
|
||||||
- mime_type = IO.popen(["file", "--brief", "--mime-type", file], in: :close, err: :close) { |io| io.read.chomp }
|
- mime_type = IO.popen(["file", "--brief", "--mime-type", file], in: :close, err: :close) { |io| io.read.chomp }
|
||||||
- content = Base64.urlsafe_encode64 File.read( file)
|
- content = Base64.urlsafe_encode64 File.read( file)
|
||||||
- "data:#{mime_type};base64,#{content}"
|
- "data:#{mime_type};base64,#{content}"
|
||||||
|
~ "\xEF\xBB\xBF"
|
||||||
!!! 5
|
!!! 5
|
||||||
%html(lang='en')
|
%html(lang='en')
|
||||||
%head
|
%head
|
||||||
|
@ -39,8 +39,8 @@
|
||||||
%body
|
%body
|
||||||
%header(style="")
|
%header(style="")
|
||||||
%figure.logos(style="margin-top:0.3cm")<>
|
%figure.logos(style="margin-top:0.3cm")<>
|
||||||
%img#tagungs-logo(style="float:right" src="files/icmpc15_logo.jpg")
|
%img#tagungs-logo(style="float:right" src="files/icmpc15_logo.png")
|
||||||
%img#uni-logo(src="files/univie_logo.png")
|
%img#uni-logo(src="files/Uni_Logo_2016_ausschnitt.gif")
|
||||||
-#%div(style="font-size:0.8em;margin-top:1.31cm")
|
-#%div(style="font-size:0.8em;margin-top:1.31cm")
|
||||||
44. Jahrestagung für Akustik
|
44. Jahrestagung für Akustik
|
||||||
%br<>
|
%br<>
|
||||||
|
@ -65,10 +65,19 @@
|
||||||
|
|
||||||
%main
|
%main
|
||||||
#column1_1
|
#column1_1
|
||||||
%section#heavy_features
|
%section#hardness
|
||||||
|
%h1 Hardness
|
||||||
|
%p
|
||||||
|
<q>Hardness</q> is often considered a distinctive feature of (heavy)
|
||||||
|
metal music, as well as in genres like hardcore techno or <q>Neue
|
||||||
|
Deutsche Härte</q>.
|
||||||
|
In a previous investigation the concept of <q>hardness</q> in music
|
||||||
|
was examined in terms of its acoustic correlates and suitability as
|
||||||
|
a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
|
||||||
|
|
||||||
:markdown
|
:markdown
|
||||||
Sound Features
|
Sound Features
|
||||||
==============
|
--------------
|
||||||
|
|
||||||
Considering Bonferroni correction, 65 significant feature
|
Considering Bonferroni correction, 65 significant feature
|
||||||
correlations were found for the concept of <q>hardness</q>.
|
correlations were found for the concept of <q>hardness</q>.
|
||||||
|
@ -81,24 +90,25 @@
|
||||||
%li
|
%li
|
||||||
percussive energy / rhythmic density
|
percussive energy / rhythmic density
|
||||||
%figure
|
%figure
|
||||||
%img(style="width:50%" src="files/sonagramm_blunt_log.png")
|
%img.fifty(src="files/sonagramm_blunt_log.png")
|
||||||
%img(style="width:50%" src="files/sonagramm_decap_log.png")
|
%img.fifty(src="files/sonagramm_decap_log.png")
|
||||||
%li
|
%li
|
||||||
dynamic distribution
|
dynamic distribution
|
||||||
%figure
|
%figure
|
||||||
%img(style="width:50%" src="files/blunt_envelope.png")
|
%img.fifty(src="files/blunt_envelope.png")
|
||||||
%img(style="width:50%" src="files/decap_envelope.png")
|
%img.fifty(src="files/decap_envelope.png")
|
||||||
%figure
|
%figure
|
||||||
%img(style="width:50%" src="files/blunt_dyndist.png")
|
%img.fifty(src="files/blunt_dyndist.png")
|
||||||
%img(style="width:50%" src="files/decap_dyndist.png")
|
%img.fifty(src="files/decap_dyndist.png")
|
||||||
%li
|
%li
|
||||||
melodic content / harmonic entropy
|
melodic content / harmonic entropy
|
||||||
%figure
|
%figure
|
||||||
%img(style="width:50%" src="files/blunt_chromagram.png")
|
%img.fifty(src="files/blunt_chromagram.png")
|
||||||
%img(style="width:50%" src="files/decap_chromagram.png")
|
%img.fifty(src="files/decap_chromagram.png")
|
||||||
%section#heavy_model
|
|
||||||
%h1 Model
|
|
||||||
:markdown
|
:markdown
|
||||||
|
Model
|
||||||
|
-----
|
||||||
|
|
||||||
Sequential feature selection
|
Sequential feature selection
|
||||||
|
|
||||||
* set of 5 features
|
* set of 5 features
|
||||||
|
@ -111,12 +121,12 @@
|
||||||
r | 0.900
|
r | 0.900
|
||||||
%figure
|
%figure
|
||||||
%img(src="scatter_hardness_model5.png")
|
%img(src="scatter_hardness_model5.png")
|
||||||
%section#heavy_rater_agreement
|
|
||||||
:markdown
|
:markdown
|
||||||
Rater Agreement
|
Rater Agreement
|
||||||
===============
|
---------------
|
||||||
|
|
||||||
Intraclass Correlation Coefficient (Two-Way Model, Consistency): <b>0.653</b>
|
Intraclass Correlation Coefficient (Two-Way Model, Consistency): <b>0.653</b>
|
||||||
|
.clear
|
||||||
|
|
||||||
#column1_2
|
#column1_2
|
||||||
-#%section#aims
|
-#%section#aims
|
||||||
|
@ -132,110 +142,33 @@
|
||||||
%h1 Method
|
%h1 Method
|
||||||
%figure.right(style="width:50%")
|
%figure.right(style="width:50%")
|
||||||
%img(src="files/LastFM.png")
|
%img(src="files/LastFM.png")
|
||||||
:markdown
|
%p
|
||||||
Based on last.fm listener statistics, 150 pieces of music were selected
|
Based on last.fm listener statistics, 150 pieces of music were selected
|
||||||
from 10 different subgenres of metal, techno, gothic and pop music.
|
from 10 different subgenres of metal, techno, gothic and pop music.
|
||||||
|
%p
|
||||||
In an online listening test, 40 participants were asked to rate the
|
In an online listening test, 40 participants were asked to rate the
|
||||||
refrain of each example in terms of <q>hardness</q> and <q>darkness</q>.
|
refrain of each example in terms of <q>hardness</q> and <q>darkness</q>.
|
||||||
These ratings served as a ground truth for examining the two
|
These ratings served as a ground truth for examining the two
|
||||||
concepts using a machine learning approach:
|
concepts using a machine learning approach:
|
||||||
|
|
||||||
|
%figure.right(style="width:50%")
|
||||||
|
%img(src="files/diagramm_vorgang_english.png")
|
||||||
|
%p
|
||||||
Taking into account 230 features describing spectral distribution,
|
Taking into account 230 features describing spectral distribution,
|
||||||
temporal and dynamic properties, relevant dimensions were
|
temporal and dynamic properties, relevant dimensions were
|
||||||
investigated and combined into models.
|
investigated and combined into models.
|
||||||
Predictors were trained using five-fold cross-validation.
|
Predictors were trained using five-fold cross-validation.
|
||||||
%figure.right(style="width:50%")
|
.clear
|
||||||
%img(src="files/einhorn/diagramm_vorgang_english.png")
|
%h2 Data
|
||||||
%section#data
|
%figure
|
||||||
%h1 Data
|
|
||||||
%figure.right(style="width:50%")
|
|
||||||
%img(src="files/scatter_hard_dark_dashedline_2017-09-05.png")
|
%img(src="files/scatter_hard_dark_dashedline_2017-09-05.png")
|
||||||
%section#hardness
|
.clear
|
||||||
%h1 Hardness
|
|
||||||
%p
|
|
||||||
<q>Hardness</q> is often considered a distinctive feature of (heavy)
|
|
||||||
metal music, as well as in genres like hardcore techno or <q>Neue
|
|
||||||
Deutsche Härte</q>.
|
|
||||||
In a previous investigation the concept of <q>hardness</q> in music
|
|
||||||
was examined in terms of its acoustic correlates and suitability as
|
|
||||||
a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
|
|
||||||
|
|
||||||
#column1_3
|
|
||||||
%section#darkness
|
|
||||||
%h1 Darkness
|
|
||||||
%p
|
|
||||||
Certain kinds of music are sometimes described as <q>dark</q> in a
|
|
||||||
metaphorical sense, especially in genres like gothic or doom metal.
|
|
||||||
According to musical adjective classifications <q>dark</q> is part
|
|
||||||
of the same cluster as <q>gloomy</q>, <q>sad</q> or
|
|
||||||
<q>depressing</q> #{quellen Hevner: 1936}, which was later adopted in
|
|
||||||
computational musical affect detection
|
|
||||||
#{quellen 'Li & Oghihara' => 2003}.
|
|
||||||
This would suggest the
|
|
||||||
relevance of sound attributes that correspond with the expression
|
|
||||||
of sadness, e.g. lower pitch, small pitch movement and <q>dark</q>
|
|
||||||
timbre #{quellen Huron: 2008}. In timbre research <q>brightness</q>
|
|
||||||
is often considered one of the central perceptual axes
|
|
||||||
#{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
|
|
||||||
question if <q>darkness</q> in music is also reflected as the
|
|
||||||
inverse of this timbral <q>brightness</q> concept.
|
|
||||||
%section#darkness_features
|
|
||||||
:markdown
|
|
||||||
Sound Features
|
|
||||||
==============
|
|
||||||
|
|
||||||
Considering Bonferroni correction, 35 significant feature
|
|
||||||
correlations were found for the <q>darkness</q> ratings.
|
|
||||||
|
|
||||||
While a suspected negative correlation with **timbral
|
|
||||||
<q>brightness</q>** cannot be confirmed, <q>darkness</q> appears to
|
|
||||||
be associated with a high **spectral complexity** and harmonic
|
|
||||||
traits like **major or minor mode**.
|
|
||||||
%figure
|
|
||||||
%img(src="files/scatter_spectral_centroid_essentia_darkness.png")
|
|
||||||
:markdown
|
|
||||||
Correlations between darkness rating and measures for brightness:
|
|
||||||
|
|
||||||
Feature | r | p
|
|
||||||
-----------------------|--------|----------
|
|
||||||
Spectral centroid | 0.3340 | <0.01
|
|
||||||
High frequency content | 0.1526 | 0.0631
|
|
||||||
%figure
|
|
||||||
%img(src="files/violin_keyEdma_darkMean_blaugelb.png")
|
|
||||||
%p
|
|
||||||
Musical excerpts in minor mode were significantly rated as
|
|
||||||
<q>harder</q> than those in major mode. (<nobr>p < 0.01</nobr>
|
|
||||||
according to t-test)
|
|
||||||
%section#darkness_model
|
|
||||||
%h1 Model
|
|
||||||
%figure
|
|
||||||
%img(src="files/scatter_darkness_model8.png")
|
|
||||||
:markdown
|
|
||||||
Sequential feature selection:
|
|
||||||
|
|
||||||
* combination of 8 features
|
|
||||||
* predictive linear regression model
|
|
||||||
|
|
||||||
RMSE| 0.81
|
|
||||||
R-Squared| 0.60
|
|
||||||
MSE| 0.65
|
|
||||||
MAE| 0.64
|
|
||||||
r| 0.7978
|
|
||||||
%section#darkness_rater_agreement
|
|
||||||
:markdown
|
|
||||||
Rater Agreement
|
|
||||||
===============
|
|
||||||
|
|
||||||
Intraclass Correlation Coefficient (Two-Way Model, Consistency):
|
|
||||||
**0.498**
|
|
||||||
|
|
||||||
%footer
|
|
||||||
%section#further_resultes_conclusion
|
%section#further_resultes_conclusion
|
||||||
|
%h1 Further Results & Conclusions
|
||||||
|
%figure.fifty
|
||||||
|
%img.right(src="files/predictionTree_genreAgg2.png")
|
||||||
|
%img.right(src="files/confusionMatrix_simpleTree_genreAgg2.png")
|
||||||
:markdown
|
:markdown
|
||||||
Further Results & Conclusions
|
|
||||||
=================================
|
|
||||||
|
|
||||||
Comparison
|
Comparison
|
||||||
----------
|
----------
|
||||||
|
|
||||||
|
@ -262,8 +195,77 @@
|
||||||
E.g. a simple tree can be constructed for classification into broad
|
E.g. a simple tree can be constructed for classification into broad
|
||||||
genre categories (Pop, Techno, Metal, Gothic) with an accuracy of
|
genre categories (Pop, Techno, Metal, Gothic) with an accuracy of
|
||||||
74%.
|
74%.
|
||||||
%img(src="files/predictionTree_genreAgg2.png")
|
.clear
|
||||||
%img(src="files/confusionMatrix_simpleTree_genreAgg2.png")
|
|
||||||
|
|
||||||
|
#column1_3
|
||||||
|
%section#darkness
|
||||||
|
%h1 Darkness
|
||||||
|
%p
|
||||||
|
Certain kinds of music are sometimes described as <q>dark</q> in a
|
||||||
|
metaphorical sense, especially in genres like gothic or doom metal.
|
||||||
|
According to musical adjective classifications <q>dark</q> is part
|
||||||
|
of the same cluster as <q>gloomy</q>, <q>sad</q> or
|
||||||
|
<q>depressing</q> #{quellen Hevner: 1936}, which was later adopted in
|
||||||
|
computational musical affect detection
|
||||||
|
#{quellen 'Li & Oghihara' => 2003}.
|
||||||
|
This would suggest the
|
||||||
|
relevance of sound attributes that correspond with the expression
|
||||||
|
of sadness, e.g. lower pitch, small pitch movement and <q>dark</q>
|
||||||
|
timbre #{quellen Huron: 2008}. In timbre research <q>brightness</q>
|
||||||
|
is often considered one of the central perceptual axes
|
||||||
|
#{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
|
||||||
|
question if <q>darkness</q> in music is also reflected as the
|
||||||
|
inverse of this timbral <q>brightness</q> concept.
|
||||||
|
:markdown
|
||||||
|
Sound Features
|
||||||
|
--------------
|
||||||
|
|
||||||
|
Considering Bonferroni correction, 35 significant feature
|
||||||
|
correlations were found for the <q>darkness</q> ratings.
|
||||||
|
|
||||||
|
While a suspected negative correlation with **timbral
|
||||||
|
<q>brightness</q>** cannot be confirmed, <q>darkness</q> appears to
|
||||||
|
be associated with a high **spectral complexity** and harmonic
|
||||||
|
traits like **major or minor mode**.
|
||||||
|
%figure.fifty
|
||||||
|
%img(src="files/scatter_spectral_centroid_essentia_darkness.png")
|
||||||
|
:markdown
|
||||||
|
Correlations between darkness rating and measures for brightness:
|
||||||
|
|
||||||
|
Feature | r | p
|
||||||
|
-----------------------|--------|----------
|
||||||
|
Spectral centroid | 0.3340 | <0.01
|
||||||
|
High frequency content | 0.1526 | 0.0631
|
||||||
|
%figure.fifty
|
||||||
|
%img(src="files/violin_keyEdma_darkMean_blaugelb.png")
|
||||||
|
%p
|
||||||
|
Musical excerpts in minor mode were significantly rated as
|
||||||
|
<q>harder</q> than those in major mode. (<nobr>p < 0.01</nobr>
|
||||||
|
according to t-test)
|
||||||
|
%h2 Model
|
||||||
|
%figure.fifty
|
||||||
|
%img(src="files/scatter_darkness_model8.png")
|
||||||
|
:markdown
|
||||||
|
Sequential feature selection:
|
||||||
|
|
||||||
|
* combination of 8 features
|
||||||
|
* predictive linear regression model
|
||||||
|
|
||||||
|
RMSE| 0.81
|
||||||
|
R-Squared| 0.60
|
||||||
|
MSE| 0.65
|
||||||
|
MAE| 0.64
|
||||||
|
r| 0.7978
|
||||||
|
:markdown
|
||||||
|
Rater Agreement
|
||||||
|
---------------
|
||||||
|
|
||||||
|
Intraclass Correlation Coefficient (Two-Way Model, Consistency):
|
||||||
|
**0.498**
|
||||||
|
.clear
|
||||||
|
|
||||||
|
%footer
|
||||||
%section#conclusion
|
%section#conclusion
|
||||||
:markdown
|
:markdown
|
||||||
Conclusion
|
Conclusion
|
||||||
|
@ -275,111 +277,6 @@
|
||||||
used for analyzing and indexing music collections and e.g. in a
|
used for analyzing and indexing music collections and e.g. in a
|
||||||
decision tree for automatic genre prediction.
|
decision tree for automatic genre prediction.
|
||||||
|
|
||||||
-#%section#ergebnisse1(style="height:96.35cm")
|
|
||||||
%h1 4. Ergebnisse
|
|
||||||
%figure.right(style="width:70%")
|
|
||||||
%img(alt='Verwelkter Mohn' src='files/violin_genre_darkMean.svg')
|
|
||||||
%p
|
|
||||||
Es zeigt sich ein Bezug zwischen dem Genre und der
|
|
||||||
durchschnittlichen Düsterkeitsbewertung der jeweiligen Stimuli.
|
|
||||||
%figure.right(style="width:35%")
|
|
||||||
%img(alt='Ernstes Indigo' src='files/scatter_spectral_centroid_essentia_darkness.svg')
|
|
||||||
%p
|
|
||||||
Eine Antiproportionalität zu klangfarblicher <q>Helligkeit</q> lässt
|
|
||||||
sich (mit der vorliegenden Messmethode) nicht nachweisen. Es liegt
|
|
||||||
im Gegenteil sogar eine leicht positive Korrelation vor –
|
|
||||||
womöglich u.a. bedingt durch erhöhte dissonante Klanganteile im
|
|
||||||
Hochfrequenzbereich (z.B. Schlagzeugvorkommen). Werden die
|
|
||||||
perkussiven Signalanteile zuvor ausgefiltert, verringert sich
|
|
||||||
dieser Effekt bereits deutlich.
|
|
||||||
%figure.nobrtd(style="width:24em")
|
|
||||||
:markdown
|
|
||||||
Merkmal|r|p
|
|
||||||
---|---|---
|
|
||||||
Spectral Centroid|0,3340|< 0,0001
|
|
||||||
Hochfrequenzanteil (> 1500 Hz)|0,1526|0,0631
|
|
||||||
Spectral Centroid (harmonischer Teil)|0,2094|0,0101
|
|
||||||
Hochfrequenzanteil (harmonischer Teil)|0,1270|0,1215
|
|
||||||
{:.merkmale}
|
|
||||||
%figcaption
|
|
||||||
Korrelation der durchschnittlichen Düsterkeits<wbr/>bewertung mit Maßen
|
|
||||||
für klangfarbliche Helligkeit.
|
|
||||||
|
|
||||||
.clear
|
|
||||||
%figure.left(style="width:41.1%")
|
|
||||||
%img(alt='Trauriges Purpur' src='files/violin_keyEdma_darkMean_blaugelb.svg')
|
|
||||||
|
|
||||||
%figure
|
|
||||||
%figure.right(style="width:12em")
|
|
||||||
%img(alt="lilien grau" src="files/meanspectra_10khz_600dpi.png")
|
|
||||||
%figure.right
|
|
||||||
:markdown
|
|
||||||
Merkmal|r|p
|
|
||||||
---|---|---
|
|
||||||
RMS Gammatone 1|- 0,3989|< 0,0001
|
|
||||||
RMS Gammatone 4|- 0,3427|< 0,0001
|
|
||||||
RMS Gammatone 5|- 0,3126|0,0001
|
|
||||||
{:.merkmale}
|
|
||||||
%p(style="clear:right")
|
|
||||||
Zwischen den 30 am düstersten bzw. am wenigsten düster bewerteten
|
|
||||||
Klangbeispielen zeigen sich charakteristische Unterschiede in der spektralen
|
|
||||||
Verteilung (insbesondere im Bereich der Gammatone-Filterbank-Bänder 1, 4 und 5).
|
|
||||||
|
|
||||||
%p(style="clear:right")
|
|
||||||
Ein deutlicher Zusammenhang zeigt sich mit der Tonart der
|
|
||||||
jeweiligen Ausschnitte: Moll-Beispiele wurden im Durchschnitt als
|
|
||||||
düsterer bewertet als Stücke in Dur-Tonarten (<nobr>p < 0.0001</nobr> laut t-Test).
|
|
||||||
%p(style="clear:right")
|
|
||||||
Teilweise eher statische Tonchroma-Veränderungen im Fall der als
|
|
||||||
düster bewerteten Beispiele könnten die Theorie geringere
|
|
||||||
Tonhöhenbewegungen in Zusammenhang mit einem Ausdruck von Trauer
|
|
||||||
bestätigen (siehe z.B. Chromagramm <q><nobr>Sunn 0)))</nobr></q>).
|
|
||||||
%figure.right(style="width:58.2%")
|
|
||||||
%img(style="width:49%" alt='Schrumpeliges Gelb' src='files/chromagramm_sunn.svg')
|
|
||||||
%img(style="width:49%" alt='Vergängliches Weiß' src='files/chromagramm_abba.svg')
|
|
||||||
%p(style="clear:left;max-width: 50%")
|
|
||||||
Der stärkste Zusammenhang lässt sich zur Spectral Complexity
|
|
||||||
feststellen, welche die Komplexität des Signals in Bezug auf seine
|
|
||||||
Frequenzkomponenten anhand der Anzahl spektraler Peaks im Bereich
|
|
||||||
zwischen 100 Hz und 5 kHz beschreibt. Dies ist interessant mit den
|
|
||||||
Ergebnissen von #{quellen 'Laurier et al.' => 2010} in Bezug zu setzen,
|
|
||||||
welche beobachteten, dass <q>entspannte</q> (<q>relaxed</q>) Stücke eine
|
|
||||||
niedrigere spektrale Komplexität aufweisen, <q>fröhliche</q> (<q>happy</q>)
|
|
||||||
Stücke jedoch eine leicht höhere spektrale Komplexität als
|
|
||||||
<q>nicht fröhliche</q>.
|
|
||||||
%figure.left(style="width:59.83%;position:relative")
|
|
||||||
%img(alt='Totes Grün' src='files/scatter_model8_mit_beschriftung_gross.svg')
|
|
||||||
%img(alt="Farbiges Beispiel" style="width:5cm;opacity:0.7;position:absolute;top:0;left:3cm" src="files/bat.png")
|
|
||||||
%p(style="clear:right")
|
|
||||||
Nach sequentieller Merkmalsauswahl wurden 8 Signaldeskriptoren zur
|
|
||||||
Bildung eines Modells zu Rate gezogen:
|
|
||||||
:markdown
|
|
||||||
Merkmal|r|p
|
|
||||||
----|----|----
|
|
||||||
Spectral Complexity (mean)| 0,6224| < 0,0001
|
|
||||||
HPCP Entropy (mean)| 0,5355| < 0,0001
|
|
||||||
Dynamic Complexity| - 0,4855| < 0,0001
|
|
||||||
Onset Rate| - 0,4837| < 0,0001
|
|
||||||
Pitch Salience| 0,4835| < 0,0001
|
|
||||||
MFCC 3 (mean)| 0,4657| < 0,0001
|
|
||||||
Spectral Centroid (mean)| 0,3340| < 0,0001
|
|
||||||
RMS Energy Gammatone 4| - 0,3427| < 0,0001
|
|
||||||
{:.merkmale}
|
|
||||||
%p
|
|
||||||
Anhand dieser wurde unter 5-facher Kreuzvalidierung ein lineares
|
|
||||||
Regressionsmodell zur Abschätzung der Düsterkeitsbewertung erstellt.
|
|
||||||
:markdown
|
|
||||||
Merkmal|Wert
|
|
||||||
----|----
|
|
||||||
Root-mean-squared error (RMSE)|0,81<span class="hidden">00</span>
|
|
||||||
Bestimmtheitsmaß (R<sup>2</sup>)|0,60<span class="hidden">00</span>
|
|
||||||
Mean Squared Error (MSE)|0,65<span class="hidden">00</span>
|
|
||||||
Mean Average Error (MAE)|0,64<span class="hidden">00</span>
|
|
||||||
Korrelation (insgesamt)|0,7978
|
|
||||||
{:.merkmale}
|
|
||||||
%div(style="clear:left")
|
|
||||||
.clear
|
|
||||||
|
|
||||||
%section#references
|
%section#references
|
||||||
-#(style="width:44.5%;display:inline-block;float:right")
|
-#(style="width:44.5%;display:inline-block;float:right")
|
||||||
%h1 References
|
%h1 References
|
||||||
|
@ -389,8 +286,7 @@
|
||||||
%span.year 2017
|
%span.year 2017
|
||||||
%span.title <q>Hardness</q> as a semantic audio descriptor for music using automatic feature extraction
|
%span.title <q>Hardness</q> as a semantic audio descriptor for music using automatic feature extraction
|
||||||
%span.herausgeber Gesellschaft für Informatik, Bonn
|
%span.herausgeber Gesellschaft für Informatik, Bonn
|
||||||
%span.link
|
%span.link= link 'https://doi.org/10.18420/in2017_06'
|
||||||
%a(href="https://doi.org/10.18420/in2017_06") https://doi.org/10.18420/in2017_06
|
|
||||||
%li
|
%li
|
||||||
%span.author Grey, J.M.
|
%span.author Grey, J.M.
|
||||||
%span.year 1975
|
%span.year 1975
|
||||||
|
|
18
style.scss
|
@ -143,8 +143,7 @@ footer {
|
||||||
|
|
||||||
body {
|
body {
|
||||||
margin: 0;
|
margin: 0;
|
||||||
background: url(files/marble_black.png); //url(brushed-metal.new.svg);
|
background: url(brushed-metal.dark.svg), url(files/marble_black.png), #252220;
|
||||||
background: url(brushed-metal.pink.svg);
|
|
||||||
color: #565655;
|
color: #565655;
|
||||||
font-family: "Cardo";
|
font-family: "Cardo";
|
||||||
}
|
}
|
||||||
|
@ -167,19 +166,23 @@ section {
|
||||||
font-size: 0.95em;
|
font-size: 0.95em;
|
||||||
//text-align: justify;
|
//text-align: justify;
|
||||||
|
|
||||||
&:first-child {
|
&:first-child + * {
|
||||||
|
margin-top: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
//&:first-child {
|
||||||
&, &::before {
|
&, &::before {
|
||||||
border-top-right-radius: 2rem;
|
border-top-right-radius: 2rem;
|
||||||
border-top-left-radius: 2rem;
|
border-top-left-radius: 2rem;
|
||||||
//margin-top: 0;
|
//margin-top: 0;
|
||||||
}
|
}
|
||||||
}
|
//}
|
||||||
&:last-child {
|
//&:last-child {
|
||||||
&, &::before {
|
&, &::before {
|
||||||
border-bottom-right-radius: 0.5rem;
|
border-bottom-right-radius: 0.5rem;
|
||||||
border-bottom-left-radius: 0.5rem;
|
border-bottom-left-radius: 0.5rem;
|
||||||
}
|
}
|
||||||
}
|
//}
|
||||||
|
|
||||||
&::before {
|
&::before {
|
||||||
z-index: -1;
|
z-index: -1;
|
||||||
|
@ -196,6 +199,9 @@ section {
|
||||||
-webkit-print-color-adjust: exact;
|
-webkit-print-color-adjust: exact;
|
||||||
-webkit-filter: opacity(1);
|
-webkit-filter: opacity(1);
|
||||||
}
|
}
|
||||||
|
&[header-background]::before {
|
||||||
|
background: linear-gradient( rgba(205, 106, 81, 0.8) 2.2rem, rgba(256, 256, 256, 0.8) 2.3rem );
|
||||||
|
}
|
||||||
|
|
||||||
h1:first-child {
|
h1:first-child {
|
||||||
//border-bottom: 0.3rem solid black
|
//border-bottom: 0.3rem solid black
|
||||||
|
|