diff --git a/brushed-metal.dark.svg b/brushed-metal.dark.svg
new file mode 100644
index 0000000..964565f
--- /dev/null
+++ b/brushed-metal.dark.svg
@@ -0,0 +1,144 @@
+
+
+
+
diff --git a/files/LastFM.png b/files/LastFM.png
new file mode 100644
index 0000000..fb01fc7
Binary files /dev/null and b/files/LastFM.png differ
diff --git a/files/blunt_chromagram.png b/files/blunt_chromagram.png
new file mode 100644
index 0000000..087e11d
Binary files /dev/null and b/files/blunt_chromagram.png differ
diff --git a/files/blunt_dyndist.png b/files/blunt_dyndist.png
new file mode 100644
index 0000000..0143b61
Binary files /dev/null and b/files/blunt_dyndist.png differ
diff --git a/files/blunt_envelope.png b/files/blunt_envelope.png
new file mode 100644
index 0000000..814464b
Binary files /dev/null and b/files/blunt_envelope.png differ
diff --git a/files/confusionMatrix_simpleTree_genreAgg2.png b/files/confusionMatrix_simpleTree_genreAgg2.png
new file mode 100644
index 0000000..8de9e64
Binary files /dev/null and b/files/confusionMatrix_simpleTree_genreAgg2.png differ
diff --git a/files/decap_chromagram.png b/files/decap_chromagram.png
new file mode 100644
index 0000000..94d04e9
Binary files /dev/null and b/files/decap_chromagram.png differ
diff --git a/files/decap_dyndist.png b/files/decap_dyndist.png
new file mode 100644
index 0000000..23d1100
Binary files /dev/null and b/files/decap_dyndist.png differ
diff --git a/files/decap_envelope.png b/files/decap_envelope.png
new file mode 100644
index 0000000..4c6b9f6
Binary files /dev/null and b/files/decap_envelope.png differ
diff --git a/files/diagramm_vorgang_english.png b/files/diagramm_vorgang_english.png
new file mode 100644
index 0000000..72f6f9e
Binary files /dev/null and b/files/diagramm_vorgang_english.png differ
diff --git a/files/icmpc15_logo.jpg b/files/icmpc15_logo.jpg
new file mode 100644
index 0000000..3730227
Binary files /dev/null and b/files/icmpc15_logo.jpg differ
diff --git a/files/icmpc15_logo.png b/files/icmpc15_logo.png
new file mode 100644
index 0000000..c958da9
Binary files /dev/null and b/files/icmpc15_logo.png differ
diff --git a/files/predictionTree_genreAgg2.png b/files/predictionTree_genreAgg2.png
new file mode 100644
index 0000000..f1933f1
Binary files /dev/null and b/files/predictionTree_genreAgg2.png differ
diff --git a/files/scatter_darkness_model8.png b/files/scatter_darkness_model8.png
new file mode 100644
index 0000000..b8b34a5
Binary files /dev/null and b/files/scatter_darkness_model8.png differ
diff --git a/files/scatter_hard_dark_dashedline_2017-09-05.png b/files/scatter_hard_dark_dashedline_2017-09-05.png
new file mode 100644
index 0000000..a6701a7
Binary files /dev/null and b/files/scatter_hard_dark_dashedline_2017-09-05.png differ
diff --git a/files/scatter_hardness_model5.png b/files/scatter_hardness_model5.png
new file mode 100644
index 0000000..eef3c0f
Binary files /dev/null and b/files/scatter_hardness_model5.png differ
diff --git a/files/scatter_spectral_centroid_essentia_darkness.png b/files/scatter_spectral_centroid_essentia_darkness.png
new file mode 100644
index 0000000..6266126
Binary files /dev/null and b/files/scatter_spectral_centroid_essentia_darkness.png differ
diff --git a/files/sonagramm_blunt_log.png b/files/sonagramm_blunt_log.png
new file mode 100644
index 0000000..60a10dd
Binary files /dev/null and b/files/sonagramm_blunt_log.png differ
diff --git a/files/sonagramm_decap_log.png b/files/sonagramm_decap_log.png
new file mode 100644
index 0000000..121712a
Binary files /dev/null and b/files/sonagramm_decap_log.png differ
diff --git a/files/univie_logo.png b/files/univie_logo.png
new file mode 100644
index 0000000..a7d2a49
Binary files /dev/null and b/files/univie_logo.png differ
diff --git a/files/violin_keyEdma_darkMean_blaugelb.png b/files/violin_keyEdma_darkMean_blaugelb.png
new file mode 100644
index 0000000..109b42a
Binary files /dev/null and b/files/violin_keyEdma_darkMean_blaugelb.png differ
diff --git a/index.html.haml b/index.html.haml
index 551118a..a5e96be 100644
--- a/index.html.haml
+++ b/index.html.haml
@@ -1,5 +1,4 @@
- require "base64"
-~ "\xEF\xBB\xBF"
- def quellen opts
- etc = opts.key? :etc
- if etc
@@ -14,6 +13,7 @@
- mime_type = IO.popen(["file", "--brief", "--mime-type", file], in: :close, err: :close) { |io| io.read.chomp }
- content = Base64.urlsafe_encode64 File.read( file)
- "data:#{mime_type};base64,#{content}"
+~ "\xEF\xBB\xBF"
!!! 5
%html(lang='en')
%head
@@ -39,8 +39,8 @@
%body
%header(style="")
%figure.logos(style="margin-top:0.3cm")<>
- %img#tagungs-logo(style="float:right" src="files/icmpc15_logo.jpg")
- %img#uni-logo(src="files/univie_logo.png")
+ %img#tagungs-logo(style="float:right" src="files/icmpc15_logo.png")
+ %img#uni-logo(src="files/Uni_Logo_2016_ausschnitt.gif")
-#%div(style="font-size:0.8em;margin-top:1.31cm")
44. Jahrestagung für Akustik
%br<>
@@ -65,10 +65,19 @@
%main
#column1_1
- %section#heavy_features
+ %section#hardness
+ %h1 Hardness
+ %p
+ Hardness is often considered a distinctive feature of (heavy)
+ metal music, as well as in genres like hardcore techno or Neue
+ Deutsche Härte.
+ In a previous investigation the concept of hardness in music
+ was examined in terms of its acoustic correlates and suitability as
+ a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
+
:markdown
Sound Features
- ==============
+ --------------
Considering Bonferroni correction, 65 significant feature
correlations were found for the concept of hardness.
@@ -81,24 +90,25 @@
%li
percussive energy / rhythmic density
%figure
- %img(style="width:50%" src="files/sonagramm_blunt_log.png")
- %img(style="width:50%" src="files/sonagramm_decap_log.png")
+ %img.fifty(src="files/sonagramm_blunt_log.png")
+ %img.fifty(src="files/sonagramm_decap_log.png")
%li
dynamic distribution
%figure
- %img(style="width:50%" src="files/blunt_envelope.png")
- %img(style="width:50%" src="files/decap_envelope.png")
+ %img.fifty(src="files/blunt_envelope.png")
+ %img.fifty(src="files/decap_envelope.png")
%figure
- %img(style="width:50%" src="files/blunt_dyndist.png")
- %img(style="width:50%" src="files/decap_dyndist.png")
+ %img.fifty(src="files/blunt_dyndist.png")
+ %img.fifty(src="files/decap_dyndist.png")
%li
melodic content / harmonic entropy
%figure
- %img(style="width:50%" src="files/blunt_chromagram.png")
- %img(style="width:50%" src="files/decap_chromagram.png")
- %section#heavy_model
- %h1 Model
+ %img.fifty(src="files/blunt_chromagram.png")
+ %img.fifty(src="files/decap_chromagram.png")
:markdown
+ Model
+ -----
+
Sequential feature selection
* set of 5 features
@@ -111,12 +121,12 @@
r | 0.900
%figure
%img(src="scatter_hardness_model5.png")
- %section#heavy_rater_agreement
:markdown
Rater Agreement
- ===============
+ ---------------
Intraclass Correlation Coefficient (Two-Way Model, Consistency): 0.653
+ .clear
#column1_2
-#%section#aims
@@ -132,110 +142,33 @@
%h1 Method
%figure.right(style="width:50%")
%img(src="files/LastFM.png")
- :markdown
+ %p
Based on last.fm listener statistics, 150 pieces of music were selected
from 10 different subgenres of metal, techno, gothic and pop music.
-
+ %p
In an online listening test, 40 participants were asked to rate the
refrain of each example in terms of hardness and darkness.
These ratings served as a ground truth for examining the two
concepts using a machine learning approach:
+ %figure.right(style="width:50%")
+ %img(src="files/diagramm_vorgang_english.png")
+ %p
Taking into account 230 features describing spectral distribution,
temporal and dynamic properties, relevant dimensions were
investigated and combined into models.
Predictors were trained using five-fold cross-validation.
- %figure.right(style="width:50%")
- %img(src="files/einhorn/diagramm_vorgang_english.png")
- %section#data
- %h1 Data
- %figure.right(style="width:50%")
+ .clear
+ %h2 Data
+ %figure
%img(src="files/scatter_hard_dark_dashedline_2017-09-05.png")
- %section#hardness
- %h1 Hardness
- %p
- Hardness is often considered a distinctive feature of (heavy)
- metal music, as well as in genres like hardcore techno or Neue
- Deutsche Härte.
- In a previous investigation the concept of hardness in music
- was examined in terms of its acoustic correlates and suitability as
- a descriptor for music #{quellen 'Czedik-Eysenberg et al.' => 2017}.
-
- #column1_3
- %section#darkness
- %h1 Darkness
- %p
- Certain kinds of music are sometimes described as dark in a
- metaphorical sense, especially in genres like gothic or doom metal.
- According to musical adjective classifications dark is part
- of the same cluster as gloomy, sad or
- depressing #{quellen Hevner: 1936}, which was later adopted in
- computational musical affect detection
- #{quellen 'Li & Oghihara' => 2003}.
- This would suggest the
- relevance of sound attributes that correspond with the expression
- of sadness, e.g. lower pitch, small pitch movement and dark
- timbre #{quellen Huron: 2008}. In timbre research brightness
- is often considered one of the central perceptual axes
- #{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
- question if darkness in music is also reflected as the
- inverse of this timbral brightness concept.
- %section#darkness_features
- :markdown
- Sound Features
- ==============
-
- Considering Bonferroni correction, 35 significant feature
- correlations were found for the darkness ratings.
-
- While a suspected negative correlation with **timbral
- brightness** cannot be confirmed, darkness appears to
- be associated with a high **spectral complexity** and harmonic
- traits like **major or minor mode**.
- %figure
- %img(src="files/scatter_spectral_centroid_essentia_darkness.png")
- :markdown
- Correlations between darkness rating and measures for brightness:
-
- Feature | r | p
- -----------------------|--------|----------
- Spectral centroid | 0.3340 | <0.01
- High frequency content | 0.1526 | 0.0631
- %figure
- %img(src="files/violin_keyEdma_darkMean_blaugelb.png")
- %p
- Musical excerpts in minor mode were significantly rated as
- harder than those in major mode. (p < 0.01
- according to t-test)
- %section#darkness_model
- %h1 Model
- %figure
- %img(src="files/scatter_darkness_model8.png")
- :markdown
- Sequential feature selection:
-
- * combination of 8 features
- * predictive linear regression model
-
- RMSE| 0.81
- R-Squared| 0.60
- MSE| 0.65
- MAE| 0.64
- r| 0.7978
- %section#darkness_rater_agreement
- :markdown
- Rater Agreement
- ===============
-
- Intraclass Correlation Coefficient (Two-Way Model, Consistency):
- **0.498**
-
- %footer
+ .clear
%section#further_resultes_conclusion
+ %h1 Further Results & Conclusions
+ %figure.fifty
+ %img.right(src="files/predictionTree_genreAgg2.png")
+ %img.right(src="files/confusionMatrix_simpleTree_genreAgg2.png")
:markdown
- Further Results & Conclusions
- =================================
-
Comparison
----------
@@ -262,8 +195,77 @@
E.g. a simple tree can be constructed for classification into broad
genre categories (Pop, Techno, Metal, Gothic) with an accuracy of
74%.
- %img(src="files/predictionTree_genreAgg2.png")
- %img(src="files/confusionMatrix_simpleTree_genreAgg2.png")
+ .clear
+
+
+ #column1_3
+ %section#darkness
+ %h1 Darkness
+ %p
+ Certain kinds of music are sometimes described as dark in a
+ metaphorical sense, especially in genres like gothic or doom metal.
+ According to musical adjective classifications dark is part
+ of the same cluster as gloomy, sad or
+ depressing #{quellen Hevner: 1936}, which was later adopted in
+ computational musical affect detection
+ #{quellen 'Li & Oghihara' => 2003}.
+ This would suggest the
+ relevance of sound attributes that correspond with the expression
+ of sadness, e.g. lower pitch, small pitch movement and dark
+ timbre #{quellen Huron: 2008}. In timbre research brightness
+ is often considered one of the central perceptual axes
+ #{quellen Grey: 1975, 'Siddiq et al.' => 2014}, which raises the
+ question if darkness in music is also reflected as the
+ inverse of this timbral brightness concept.
+ :markdown
+ Sound Features
+ --------------
+
+ Considering Bonferroni correction, 35 significant feature
+ correlations were found for the darkness ratings.
+
+ While a suspected negative correlation with **timbral
+ brightness** cannot be confirmed, darkness appears to
+ be associated with a high **spectral complexity** and harmonic
+ traits like **major or minor mode**.
+ %figure.fifty
+ %img(src="files/scatter_spectral_centroid_essentia_darkness.png")
+ :markdown
+ Correlations between darkness rating and measures for brightness:
+
+ Feature | r | p
+ -----------------------|--------|----------
+ Spectral centroid | 0.3340 | <0.01
+ High frequency content | 0.1526 | 0.0631
+ %figure.fifty
+ %img(src="files/violin_keyEdma_darkMean_blaugelb.png")
+ %p
+ Musical excerpts in minor mode were significantly rated as
+ harder than those in major mode. (p < 0.01
+ according to t-test)
+ %h2 Model
+ %figure.fifty
+ %img(src="files/scatter_darkness_model8.png")
+ :markdown
+ Sequential feature selection:
+
+ * combination of 8 features
+ * predictive linear regression model
+
+ RMSE| 0.81
+ R-Squared| 0.60
+ MSE| 0.65
+ MAE| 0.64
+ r| 0.7978
+ :markdown
+ Rater Agreement
+ ---------------
+
+ Intraclass Correlation Coefficient (Two-Way Model, Consistency):
+ **0.498**
+ .clear
+
+ %footer
%section#conclusion
:markdown
Conclusion
@@ -274,111 +276,6 @@
sound characteristics associated with these concepts, they can be
used for analyzing and indexing music collections and e.g. in a
decision tree for automatic genre prediction.
-
- -#%section#ergebnisse1(style="height:96.35cm")
- %h1 4. Ergebnisse
- %figure.right(style="width:70%")
- %img(alt='Verwelkter Mohn' src='files/violin_genre_darkMean.svg')
- %p
- Es zeigt sich ein Bezug zwischen dem Genre und der
- durchschnittlichen Düsterkeitsbewertung der jeweiligen Stimuli.
- %figure.right(style="width:35%")
- %img(alt='Ernstes Indigo' src='files/scatter_spectral_centroid_essentia_darkness.svg')
- %p
- Eine Antiproportionalität zu klangfarblicher Helligkeit lässt
- sich (mit der vorliegenden Messmethode) nicht nachweisen. Es liegt
- im Gegenteil sogar eine leicht positive Korrelation vor –
- womöglich u.a. bedingt durch erhöhte dissonante Klanganteile im
- Hochfrequenzbereich (z.B. Schlagzeugvorkommen). Werden die
- perkussiven Signalanteile zuvor ausgefiltert, verringert sich
- dieser Effekt bereits deutlich.
- %figure.nobrtd(style="width:24em")
- :markdown
- Merkmal|r|p
- ---|---|---
- Spectral Centroid|0,3340|< 0,0001
- Hochfrequenzanteil (> 1500 Hz)|0,1526|0,0631
- Spectral Centroid (harmonischer Teil)|0,2094|0,0101
- Hochfrequenzanteil (harmonischer Teil)|0,1270|0,1215
- {:.merkmale}
- %figcaption
- Korrelation der durchschnittlichen Düsterkeitsbewertung mit Maßen
- für klangfarbliche Helligkeit.
-
- .clear
- %figure.left(style="width:41.1%")
- %img(alt='Trauriges Purpur' src='files/violin_keyEdma_darkMean_blaugelb.svg')
-
- %figure
- %figure.right(style="width:12em")
- %img(alt="lilien grau" src="files/meanspectra_10khz_600dpi.png")
- %figure.right
- :markdown
- Merkmal|r|p
- ---|---|---
- RMS Gammatone 1|- 0,3989|< 0,0001
- RMS Gammatone 4|- 0,3427|< 0,0001
- RMS Gammatone 5|- 0,3126|0,0001
- {:.merkmale}
- %p(style="clear:right")
- Zwischen den 30 am düstersten bzw. am wenigsten düster bewerteten
- Klangbeispielen zeigen sich charakteristische Unterschiede in der spektralen
- Verteilung (insbesondere im Bereich der Gammatone-Filterbank-Bänder 1, 4 und 5).
-
- %p(style="clear:right")
- Ein deutlicher Zusammenhang zeigt sich mit der Tonart der
- jeweiligen Ausschnitte: Moll-Beispiele wurden im Durchschnitt als
- düsterer bewertet als Stücke in Dur-Tonarten (p < 0.0001 laut t-Test).
- %p(style="clear:right")
- Teilweise eher statische Tonchroma-Veränderungen im Fall der als
- düster bewerteten Beispiele könnten die Theorie geringere
- Tonhöhenbewegungen in Zusammenhang mit einem Ausdruck von Trauer
- bestätigen (siehe z.B. Chromagramm Sunn 0)))).
- %figure.right(style="width:58.2%")
- %img(style="width:49%" alt='Schrumpeliges Gelb' src='files/chromagramm_sunn.svg')
- %img(style="width:49%" alt='Vergängliches Weiß' src='files/chromagramm_abba.svg')
- %p(style="clear:left;max-width: 50%")
- Der stärkste Zusammenhang lässt sich zur Spectral Complexity
- feststellen, welche die Komplexität des Signals in Bezug auf seine
- Frequenzkomponenten anhand der Anzahl spektraler Peaks im Bereich
- zwischen 100 Hz und 5 kHz beschreibt. Dies ist interessant mit den
- Ergebnissen von #{quellen 'Laurier et al.' => 2010} in Bezug zu setzen,
- welche beobachteten, dass entspannte (relaxed) Stücke eine
- niedrigere spektrale Komplexität aufweisen, fröhliche (happy)
- Stücke jedoch eine leicht höhere spektrale Komplexität als
- nicht fröhliche.
- %figure.left(style="width:59.83%;position:relative")
- %img(alt='Totes Grün' src='files/scatter_model8_mit_beschriftung_gross.svg')
- %img(alt="Farbiges Beispiel" style="width:5cm;opacity:0.7;position:absolute;top:0;left:3cm" src="files/bat.png")
- %p(style="clear:right")
- Nach sequentieller Merkmalsauswahl wurden 8 Signaldeskriptoren zur
- Bildung eines Modells zu Rate gezogen:
- :markdown
- Merkmal|r|p
- ----|----|----
- Spectral Complexity (mean)| 0,6224| < 0,0001
- HPCP Entropy (mean)| 0,5355| < 0,0001
- Dynamic Complexity| - 0,4855| < 0,0001
- Onset Rate| - 0,4837| < 0,0001
- Pitch Salience| 0,4835| < 0,0001
- MFCC 3 (mean)| 0,4657| < 0,0001
- Spectral Centroid (mean)| 0,3340| < 0,0001
- RMS Energy Gammatone 4| - 0,3427| < 0,0001
- {:.merkmale}
- %p
- Anhand dieser wurde unter 5-facher Kreuzvalidierung ein lineares
- Regressionsmodell zur Abschätzung der Düsterkeitsbewertung erstellt.
- :markdown
- Merkmal|Wert
- ----|----
- Root-mean-squared error (RMSE)|0,8100
- Bestimmtheitsmaß (R2)|0,6000
- Mean Squared Error (MSE)|0,6500
- Mean Average Error (MAE)|0,6400
- Korrelation (insgesamt)|0,7978
- {:.merkmale}
- %div(style="clear:left")
- .clear
%section#references
-#(style="width:44.5%;display:inline-block;float:right")
@@ -389,8 +286,7 @@
%span.year 2017
%span.title Hardness as a semantic audio descriptor for music using automatic feature extraction
%span.herausgeber Gesellschaft für Informatik, Bonn
- %span.link
- %a(href="https://doi.org/10.18420/in2017_06") https://doi.org/10.18420/in2017_06
+ %span.link= link 'https://doi.org/10.18420/in2017_06'
%li
%span.author Grey, J.M.
%span.year 1975
diff --git a/style.scss b/style.scss
index 23aea22..8f70d9d 100644
--- a/style.scss
+++ b/style.scss
@@ -143,8 +143,7 @@ footer {
body {
margin: 0;
- background: url(files/marble_black.png); //url(brushed-metal.new.svg);
- background: url(brushed-metal.pink.svg);
+ background: url(brushed-metal.dark.svg), url(files/marble_black.png), #252220;
color: #565655;
font-family: "Cardo";
}
@@ -167,19 +166,23 @@ section {
font-size: 0.95em;
//text-align: justify;
- &:first-child {
+ &:first-child + * {
+ margin-top: 1em;
+ }
+
+ //&:first-child {
&, &::before {
border-top-right-radius: 2rem;
border-top-left-radius: 2rem;
//margin-top: 0;
}
- }
- &:last-child {
+ //}
+ //&:last-child {
&, &::before {
border-bottom-right-radius: 0.5rem;
border-bottom-left-radius: 0.5rem;
}
- }
+ //}
&::before {
z-index: -1;
@@ -196,6 +199,9 @@ section {
-webkit-print-color-adjust: exact;
-webkit-filter: opacity(1);
}
+ &[header-background]::before {
+ background: linear-gradient( rgba(205, 106, 81, 0.8) 2.2rem, rgba(256, 256, 256, 0.8) 2.3rem );
+ }
h1:first-child {
//border-bottom: 0.3rem solid black