There are scenarios in which it is beneficial to search for an Etherne chip at several i/o locations. To do so the chip initialization is performed at several i/o locations until it succeeds. In order to allow for that operation model the i/o location fixup needs to be repeatable.
Note: This won't work with the RR-Net because the fixup bits overlap with the chip i/o bits.
Behave just like the CS8900A driver: Both the CS8900A and the LAN91C96 dynamically share a buffer for received packets and packets to be send. If the chip is exposed to a network with a lot of broadcasts the shared buffer might fill quicker with received packets than the 6502 reads them (via polling). So we might need to drop some received packets in order to be able to send anything at all.
The previous chip detection was inspired by the old IP65 driver code. For some reason it didn't work as expected. The new code is simpler and based on this statement in the chip datasheet: "The upper byte always reads as 33h and can be used to help determine the I/O location of the LAN91C96."
Made Ethernet drivers easier to consume by assembly programs.
* Replaced function pointers with JMP instructions.
* Provide return values additionally via Carry flag.
Reset Ethernet chips on initialization.
Both for the CS8900A and the W5100 the data sheets just say that
the RESET bit is automatically cleared after the RESET. This may
be interpreted in two ways:
1) There's no need to be afraid of reading the RESET bit as 1 and
unintentionally trigger a RESET by writing it back after ORing in
some other bit.
2) The RESET process isn't complete before the RESET bit hasn't
become 0 again.
It's impossible for me to empirically falsify the latter option
as the drivers are supposed to work on faster machines than the
ones I have access to. And if the RESET process includes things
like oscillators then the time to complete the RESET could differ
even between multiple exemplars of the same chip. Therefore I
opted to presume the latter option.
However that means a non-exsistent chip may cause an infinite
loop while waiting for the RESET bit to be cleared so I finally
added code to detect the presence of the Ethernet chips. There's
a risk of a chip being locked up in a way that makes the detection
fail - and therefore the RESET not being performed. This catch-22
needs to be solved by the user doing a hard RESET.
- The default mouse driver is now always named 'contiki.mou'.
- Alternative mouse drivers are present in the disk images.
- Users can select their mouse driver by renaming the files.
CFS_WRITE implies O_TRUNC which is implemented on CBM DOS by deleting an
exsisting file. Hoewever this succeeds only if the CBM DOS filetype matches.
We need a working O_TRUNC in order to be able to overwrite the contiki.cfg
configuration file.
Note: Now it has be clarified why overwriting the configuration file started to
fail the CBM PFS (platform file system) can be activated for the recently added
ethconfig program.
It cannot be ruled out that access to the address register triggers
an address auto-increment. Therefore a temporary address register
shadow is introduced to replace the access to the address regsiter.
Additionally there are several minor beautifications.
- Speed: The primary byte copy loops are reduzed to the bare minimum by adjusting the base pointer 'ptr' and loop register 'y' in such a way that the 'y' overflow matches the low byte of the loop size.
- Introduced a loop for setting the MAC address.
Additional minor fix:
- Properly start self modification with first location.
- Speed: The primary byte copy loops are reduzed to the bare minimum by adjusting the base pointer 'ptr' and loop register 'y' in such a way that the 'y' overflow matches the low byte of the loop size.
- Size: Factored out all repeated code into subroutines. Introduced a loop for setting the MAC address.
Additional minor changes:
- Activate frame reception as last step of initialization after CS8900A configuration.
- Properly set internal address bits used by the CS8900A.
Historically $(OBJECTDIR) was created when Makefile.include is read. A
consequence is that combining "clean" with "all" (or any other build
target) results in an error because the clean removes the object
directory that is required to exist when building dependencies.
Creating $(OBJECTDIR) on-demand ensures it is present when needed.
Removed creation of $(OBJECTDIR) on initial read, and added an order-only
dependency forcing its creation all Makefile* rules where the target is
explicitly or implicitly in $(OBJECTDIR).