A work-in-progress rework of the Contiki MAC and radio layers. The

main ideas are:

* Separates the Contiki low-layer network stack into four layers:
  network (e.g. sicslowpan / rime), Medium Access Control MAC
  (e.g. CSMA), Radio Duty Cycling RDC (e.g. ContikiMAC, X-MAC), and
  radio (e.g. cc2420).
* Introduces a new way to configure the network stack. Four #defines
  that specify what mechanism/protocol/driver to use at the four
  layers: NETSTACK_CONF_NETWORK, NETSTACK_CONF_MAC, NETSTACK_CONF_RDC,
  NETSTACK_CONF_RADIO.
* Adds a callback mechanism to inform the MAC and network layers about
  the fate of a transmitted packet: if the packet was not possible to
  transmit, the cause of the failure is reported, and if the packets
  was successfully transmitted, the number of tries before it was
  finally transmitted is reported.
* NULL-protocols at both the MAC and RDC layers: nullmac and nullrdc,
  which can be used when MAC and RDC functionality is not needed.
* Extends the radio API with three new functions that enable more
  efficient radio duty cycling protocols: channel check, pending
  packet, and receiving packet.
* New initialization mechanism, which takes advantage of the NETSTACK
  #defines.
This commit is contained in:
adamdunkels 2010-02-18 21:48:39 +00:00
parent 1817acae15
commit e34eb54960
29 changed files with 1176 additions and 768 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2007, Swedish Institute of Computer Science.
* Copyright (c) 2010, Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -28,7 +28,7 @@
*
* This file is part of the Contiki operating system.
*
* $Id: csma.c,v 1.5 2010/02/03 01:17:54 adamdunkels Exp $
* $Id: csma.c,v 1.6 2010/02/18 21:48:39 adamdunkels Exp $
*/
/**
@ -47,170 +47,235 @@
#include "lib/random.h"
#include "net/netstack.h"
#include "lib/list.h"
#include "lib/memb.h"
#include <string.h>
#define DEBUG 0
#if DEBUG
#include <stdio.h>
#define PRINTF(...) printf(__VA_ARGS__)
#else /* DEBUG */
#define PRINTF(...)
#endif /* DEBUG */
struct queued_packet {
struct queued_packet *next;
struct queuebuf *buf;
struct ctimer retransmit_timer;
uint8_t retransmits;
mac_callback_t sent;
void *cptr;
uint8_t transmissions;
};
#define MAX_QUEUED_PACKETS 4
LIST(packet_list);
#define MAX_RETRANSMITS 2
#define MAX_QUEUED_PACKETS 8
MEMB(packet_memb, struct queued_packet, MAX_QUEUED_PACKETS);
static const struct mac_driver *mac;
static void (* receiver_callback)(const struct mac_driver *);
const struct mac_driver *csma_init(const struct mac_driver *psc);
/*---------------------------------------------------------------------------*/
#if CSMA_CONF_REXMIT
static void
free_packet(struct queued_packet *q)
{
queuebuf_free(q->buf);
memb_free(&packet_memb, q);
}
static void retransmit_packet(void *ptr);
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
struct queued_packet *q = ptr;
clock_time_t time = 0;
mac_callback_t sent;
void *cptr;
int num_tx;
sent = q->sent;
cptr = q->cptr;
num_tx = q->transmissions;
if(status != MAC_TX_OK) {
switch(status) {
case MAC_TX_COLLISION:
PRINTF("csma: rexmit collision %d\n", q->transmissions);
break;
case MAC_TX_NOACK:
PRINTF("csma: rexmit noack %d\n", q->transmissions);
break;
default:
PRINTF("csma: rexmit err %d, %d\n", ret, q->transmissions);
}
time = NETSTACK_RDC.channel_check_interval();
if(time == 0) {
time = CLOCK_SECOND;
}
time = time + (random_rand() % (q->transmissions * 3 * time));
if(q->transmissions - 1 < MAX_RETRANSMITS) {
ctimer_set(&q->retransmit_timer, time,
retransmit_packet, q);
} else {
PRINTF("csma: drop after %d\n", q->transmissions);
free_packet(q);
mac_call_sent_callback(sent, ptr, status, num_tx);
}
} else {
PRINTF("csma: rexmit ok %d\n", q->transmissions);
free_packet(q);
mac_call_sent_callback(sent, ptr, status, num_tx);
}
}
static void
retransmit_packet(void *ptr)
{
int ret;
struct queued_packet *q = ptr;
queuebuf_to_packetbuf(q->buf);
ret = mac->send();
queuebuf_free(q->buf);
list_remove(packet_list, q);
memb_free(&packet_memb, q);
q->transmissions++;
NETSTACK_RDC.send(packet_sent, q);
}
/*---------------------------------------------------------------------------*/
static int
send_packet(void)
static void
sent_packet_1(void *ptr, int status, int num_transmissions)
{
struct queuebuf *buf;
int ret;
struct queued_packet *q = ptr;
clock_time_t time;
rimeaddr_t receiver;
/* Remember packet for later. */
rimeaddr_copy(&receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER));
buf = queuebuf_new_from_packetbuf();
ret = mac->send();
/* if(ret != MAC_TX_OK) {
printf("CSMA: err %d\n", ret);
}*/
if(rimeaddr_cmp(&receiver, &rimeaddr_null)) {
PRINTF("broadcast/");
}
if(status != MAC_TX_OK) {
switch(status) {
case MAC_TX_COLLISION:
PRINTF("csma: collision\n");
break;
case MAC_TX_NOACK:
PRINTF("csma: noack\n");
break;
default:
PRINTF("csma: err %d\n", ret);
}
} else {
PRINTF("csma: ok\n");
}
/* Check if we saw a collission, and if we have a queuebuf with the
packet available. Only retransmit unicast packets. Retransmit
only once, for now. */
if((ret == MAC_TX_COLLISION || ret == MAC_TX_NOACK) &&
buf != NULL && !rimeaddr_cmp(&receiver, &rimeaddr_null)) {
struct queued_packet *q;
q = memb_alloc(&packet_memb);
if(q == NULL) {
queuebuf_free(buf);
return ret;
if((status == MAC_TX_COLLISION || status == MAC_TX_NOACK) &&
!rimeaddr_cmp(&receiver, &rimeaddr_null)) {
/* If the packet couldn't be sent because of a collision or the
lack of an ACK, we let the other transmissions get through
before we try again. */
time = NETSTACK_RDC.channel_check_interval();
if(time == 0) {
time = CLOCK_SECOND;
}
q->buf = buf;
q->retransmits = 0;
time = time + (random_rand() % (3 * time));
if(ret == MAC_TX_COLLISION) {
/* If the packet wasn't sent because of a collission, we let the
other packet get through before we try again. */
time = mac->channel_check_interval();
if(time == 0) {
time = CLOCK_SECOND;
}
time = time + (random_rand() % (3 * time));
} else {
/* If the packet didn't get an ACK, we retransmit immediately. */
time = 0;
}
ctimer_set(&q->retransmit_timer, time,
retransmit_packet, q);
list_add(packet_list, q);
} else {
queuebuf_free(buf);
mac_callback_t sent;
void *cptr;
int num_tx;
sent = q->sent;
cptr = q->cptr;
num_tx = q->transmissions;
free_packet(q);
mac_call_sent_callback(sent, ptr, status, num_tx);
}
return ret;
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
struct queued_packet *q;
/* Remember packet for later. */
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q != NULL) {
q->transmissions = 1;
q->sent = sent;
q->cptr = ptr;
NETSTACK_RDC.send(sent_packet_1, q);
return;
}
memb_free(&packet_memb, q);
}
PRINTF("csma: could not allocate queuebuf, will drop if collision or noack\n");
NETSTACK_RDC.send(sent, ptr);
}
#else /* CSMA_CONF_REXMIT */
static int
send_packet(void)
static void
send_packet(mac_callback_t sent, void *ptr)
{
return mac->send();
NETSTACK_RDC.send(NULL, NULL);
}
#endif /* CSMA_CONF_REXMIT */
/*---------------------------------------------------------------------------*/
static void
input_packet(const struct mac_driver *d)
input_packet(void)
{
if(receiver_callback) {
receiver_callback(&csma_driver);
}
}
/*---------------------------------------------------------------------------*/
static int
read_packet(void)
{
int len;
len = mac->read();
return len;
}
/*---------------------------------------------------------------------------*/
static void
set_receive_function(void (* recv)(const struct mac_driver *))
{
receiver_callback = recv;
NETSTACK_NETWORK.input();
}
/*---------------------------------------------------------------------------*/
static int
on(void)
{
return mac->on();
return NETSTACK_RDC.on();
}
/*---------------------------------------------------------------------------*/
static int
off(int keep_radio_on)
{
return mac->off(keep_radio_on);
return NETSTACK_RDC.off(keep_radio_on);
}
/*---------------------------------------------------------------------------*/
static unsigned short
channel_check_interval(void)
{
if(mac->channel_check_interval) {
return mac->channel_check_interval();
if(NETSTACK_RDC.channel_check_interval) {
return NETSTACK_RDC.channel_check_interval();
}
return 0;
}
/*---------------------------------------------------------------------------*/
#define NAMEBUF_LEN 16
static char namebuf[NAMEBUF_LEN];
static void
init(void)
{
memb_init(&packet_memb);
/* PRINTF("CSMA with MAC %s, channel check rate %d Hz\n", mac->name,
CLOCK_SECOND / channel_check_interval());*/
memcpy(namebuf, "CSMA ", 5);
memcpy(namebuf + 5, NETSTACK_RDC.name, NAMEBUF_LEN - 6);
}
/*---------------------------------------------------------------------------*/
const struct mac_driver csma_driver = {
namebuf,
NULL,
init,
send_packet,
read_packet,
set_receive_function,
input_packet,
on,
off,
channel_check_interval,
};
/*---------------------------------------------------------------------------*/
const struct mac_driver *
csma_init(const struct mac_driver *psc)
{
memb_init(&packet_memb);
list_init(packet_list);
mac = psc;
mac->set_receive_function(input_packet);
/* printf("CSMA with MAC %s, channel check rate %d Hz\n", mac->name,
CLOCK_SECOND / channel_check_interval());*/
memcpy(namebuf, "CSMA ", 5);
memcpy(namebuf + 5, psc->name, NAMEBUF_LEN - 6);
return &csma_driver;
}
/*---------------------------------------------------------------------------*/