The official git repository for OSD-Contiki, the open source OS for the Internet of Things
Go to file
adamdunkels e34eb54960 A work-in-progress rework of the Contiki MAC and radio layers. The
main ideas are:

* Separates the Contiki low-layer network stack into four layers:
  network (e.g. sicslowpan / rime), Medium Access Control MAC
  (e.g. CSMA), Radio Duty Cycling RDC (e.g. ContikiMAC, X-MAC), and
  radio (e.g. cc2420).
* Introduces a new way to configure the network stack. Four #defines
  that specify what mechanism/protocol/driver to use at the four
  layers: NETSTACK_CONF_NETWORK, NETSTACK_CONF_MAC, NETSTACK_CONF_RDC,
  NETSTACK_CONF_RADIO.
* Adds a callback mechanism to inform the MAC and network layers about
  the fate of a transmitted packet: if the packet was not possible to
  transmit, the cause of the failure is reported, and if the packets
  was successfully transmitted, the number of tries before it was
  finally transmitted is reported.
* NULL-protocols at both the MAC and RDC layers: nullmac and nullrdc,
  which can be used when MAC and RDC functionality is not needed.
* Extends the radio API with three new functions that enable more
  efficient radio duty cycling protocols: channel check, pending
  packet, and receiving packet.
* New initialization mechanism, which takes advantage of the NETSTACK
  #defines.
2010-02-18 21:48:39 +00:00
apps Fixed compilation without timesynch compiled in 2010-02-18 20:56:12 +00:00
backyard Removed closing of stdin, stdout (and stderr on the Apple2). It was introduced in order to maximize the number of available file handles for the webserver. However none of the target machine DOSes allows to open a single file several times diminishing the intended effect very much. One the other hand not being able to "just printf() something" causes trouble over and again - i.e. hello-world seemingly not working...after all a typical case of german over-enigneering ;-) 2010-02-10 07:43:25 +00:00
core A work-in-progress rework of the Contiki MAC and radio layers. The 2010-02-18 21:48:39 +00:00
cpu Now that the C64 mouse driver works we can activate the mouse support for this target :-) 2010-02-18 21:30:31 +00:00
doc Update to Contiki version number 2.4 2010-01-29 18:03:55 +00:00
examples Now that the C64 mouse driver works we can activate the mouse support for this target :-) 2010-02-18 21:30:31 +00:00
platform A work-in-progress rework of the Contiki MAC and radio layers. The 2010-02-18 21:48:39 +00:00
tools added mote attributes to various types of motes 2010-02-18 11:13:20 +00:00
Makefile.include Parallelizing the build and the checkin isn't such a great idea after all ;-) 2010-02-07 23:30:30 +00:00
README README 2007-03-29 23:42:18 +00:00
README-BUILDING Add some info on the DEFINES= / savedefines mechanism. 2008-06-12 22:13:59 +00:00
README-EXAMPLES Added hint on recently added example. 2010-02-10 23:53:35 +00:00

Contiki is an open source, highly portable, multi-tasking operating
system for memory-constrained networked embedded systems written by
Adam Dunkels at the Networked Embedded Systems group at the Swedish
Institute of Computer Science.

Contiki is designed for embedded systems with small amounts of
memory. A typical Contiki configuration is 2 kilobytes of RAM and 40
kilobytes of ROM. Contiki consists of an event-driven kernel on top of
which application programs are dynamically loaded and unloaded at
runtime. Contiki processes use light-weight protothreads that provide
a linear, thread-like programming style on top of the event-driven
kernel. Contiki also supports per-process optional preemptive
multi-threading, interprocess communication using message passing
through events, as well as an optional GUI subsystem with either
direct graphic support for locally connected terminals or networked
virtual display with VNC or over Telnet.

Contiki contains two communication stacks: uIP and Rime. uIP is a
small RFC-compliant TCP/IP stack that makes it possible for Contiki to
communicate over the Internet. Rime is a lightweight communication
stack designed for low-power radios. Rime provides a wide range of
communication primitives, from best-effort local area broadcast, to
reliable multi-hop bulk data flooding.

Contiki runs on a variety of platform ranging from embedded
microcontrollers such as the MSP430 and the AVR to old
homecomputers. Code footprint is on the order of kilobytes and memory
usage can be configured to be as low as tens of bytes.

Contiki is written in the C programming language and is freely
available as open source under a BSD-style license. More information
about Contiki can be found at the Contiki home page:
http://www.sics.se/contiki/