Instead of using a separate data structure to request that a PD remain powered during deep sleep,
we do the same within the main LPM data structure through an additional field.
This allows us to maintain only one linked list of LPM modules and overall improves code clarity
This tutorial was written for the older implementation of CoAP, and
while it may be possible to update it, the directions include URLs and
repos that no longer exist, so it's better to just remove it.
Only the interrupt flags that have been handled must be cleared.
Otherwise, if a new interrupt occurs after the interrupt statuses are
read and before they are cleared, then it is discarded without having
been handled. This issue was particularly likely with two interrupt
trigger conditions occurring on different pins of the same port in a
short period of time.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Power-up interrupts do not always update the regular interrupt status.
Because of that, in order not to miss power-up interrupts, the ISR must
handle both the regular and the power-up interrupt statuses.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Introduce new useful GPIO macros to:
- get the raw interrupt status of a port,
- get the masked interrupt status of a port,
- get the power-up interrupt status of a port.
These macros are cleaner and less error-prone than raw register access
code copied all over the place.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
Behave just like the CS8900A driver: Both the CS8900A and the LAN91C96 dynamically share a buffer for received packets and packets to be send. If the chip is exposed to a network with a lot of broadcasts the shared buffer might fill quicker with received packets than the 6502 reads them (via polling). So we might need to drop some received packets in order to be able to send anything at all.
OR-ing an offset to a base address instead of adding it is dangerous
because it can only work if the base address is aligned enough for the
offset.
Moreover, if the base address or the offset has a value unknown at
compile time, then the assembly instructions dedicated to 'base +
offset' addressing on most CPUs can't be emitted by the compiler because
this would require the alignment of the base address against the offset
to be known in order to optimize 'base | offset' into 'base + offset'.
In that case, the compiler has to emit more instructions in order to
compute 'base | offset' on most CPUs, e.g. on ARM, which means larger
binary size and slower execution.
Hence, replace all occurrences of 'base | offset' with 'base + offset'.
This must become a coding rule.
Here are the results for the cc2538-demo example:
- Compilation of uart_init():
* before:
REG(regs->base | UART_CC) = 0;
200b78: f446 637c orr.w r3, r6, #4032 ; 0xfc0
200b7c: f043 0308 orr.w r3, r3, #8
200b80: 2200 movs r2, #0
200b82: 601a str r2, [r3, #0]
* now:
REG(regs->base + UART_CC) = 0;
200b7a: 2300 movs r3, #0
200b7c: f8c4 3fc8 str.w r3, [r4, #4040] ; 0xfc8
- Size of the .text section:
* before: 0x4c7c
* now: 0x4c28
* saved: 84 bytes
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>