Rewrite of the congestion logic. A node now report it being congested

when half the transmission queue is full. When a neighbor is heard to
be congested, the rtmetric of that node is inflated to avoid sending
more traffic in its direction.

Fixed problems with beacon intervals: intervals are now not reduced
when a path gets significantly worse, only when they get better.
This commit is contained in:
adamdunkels 2010-10-11 23:42:01 +00:00
parent d821ba5e22
commit 37adf130b4

View file

@ -33,7 +33,7 @@
*
* This file is part of the Contiki operating system.
*
* $Id: collect.c,v 1.59 2010/10/07 15:52:28 adamdunkels Exp $
* $Id: collect.c,v 1.60 2010/10/11 23:42:01 adamdunkels Exp $
*/
/**
@ -127,8 +127,9 @@ struct ack_msg {
#define MAX_MAC_REXMITS 2
#define MAX_ACK_MAC_REXMITS 3
#define REXMIT_TIME CLOCK_SECOND * 1
#define FORWARD_PACKET_LIFETIME (8 * (REXMIT_TIME) << 3)
#define MAX_SENDING_QUEUE 16
#define MAX_REXMIT_TIME_SCALING 2
#define FORWARD_PACKET_LIFETIME (120 * (REXMIT_TIME))
#define MAX_SENDING_QUEUE QUEUEBUF_CONF_NUM / 2
#define KEEPALIVE_REXMITS 8
MEMB(send_queue_memb, struct packetqueue_item, MAX_SENDING_QUEUE);
@ -312,6 +313,33 @@ update_parent(struct collect_conn *tc)
collect_neighbor_rtmetric(current));
rimeaddr_copy(&tc->parent, &best->addr);
stats.newparent++;
if(DRAW_TREE) {
printf("#A e=%d\n", collect_neighbor_link_estimate(best));
{
int i;
int etx = 0;
printf("#A l=");
for(i = 0; i < 8; i++) {
printf("%d ", best->le.history[(best->le.historyptr - 1 - i) & 7]);
etx += current->le.history[i];
}
printf("\n");
}
}
} else {
if(DRAW_TREE) {
printf("#A e=%d\n", collect_neighbor_link_estimate(current));
{
int i;
int etx = 0;
printf("#A l=");
for(i = 0; i < 8; i++) {
printf("%d ", current->le.history[(current->le.historyptr - 1 - i) & 7]);
etx += current->le.history[i];
}
printf("\n");
}
}
}
}
if(DRAW_TREE) {
@ -401,10 +429,8 @@ update_rtmetric(struct collect_conn *tc)
/* If we now have a significantly better or worse rtmetric than
we had before, what we need to make sure that our neighbors
find out about this quickly. */
if((new_rtmetric < old_rtmetric - SIGNIFICANT_RTMETRIC_PARENT_CHANGE ||
new_rtmetric > old_rtmetric + SIGNIFICANT_RTMETRIC_PARENT_CHANGE) &&
(new_rtmetric > SIGNIFICANT_RTMETRIC_PARENT_CHANGE ||
old_rtmetric > SIGNIFICANT_RTMETRIC_PARENT_CHANGE)) {
if((new_rtmetric < old_rtmetric - SIGNIFICANT_RTMETRIC_PARENT_CHANGE) &&
(old_rtmetric > SIGNIFICANT_RTMETRIC_PARENT_CHANGE)) {
PRINTF("update_rtmetric: new_rtmetric %d + %d < old_rtmetric %d\n",
new_rtmetric, SIGNIFICANT_RTMETRIC_PARENT_CHANGE, old_rtmetric);
bump_advertisement(tc);
@ -488,11 +514,10 @@ send_queued_packet(struct collect_conn *c)
if(i == NULL) {
PRINTF("%d.%d: nothing on queue\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]);
/* No packet on the queue, so there is nothing for us to send. */
/* XXX experimental feature: go through the list of neighbors to
find a potential parent for which we do not have a link
estimate and send a dummy packet to it. This allows us to
/* If there are no packets to send, we go through the list of
neighbors to find a potential parent for which we do not have a
link estimate and send a dummy packet to it. This allows us to
quickly gauge the link quality of neighbors that we do not
currently use as parents. */
if(timer_expired(&c->proactive_maintenence_timer)) {
@ -759,10 +784,11 @@ handle_ack(struct collect_conn *tc)
transmission number to its routing metric, which increases the
chance that another parent will be chosen. */
if(msg->flags & ACK_FLAGS_CONGESTED) {
collect_neighbor_tx(n, tc->max_rexmits);
collect_neighbor_set_congested(n);
collect_neighbor_tx(n, tc->max_rexmits * 2);
update_rtmetric(tc);
}
if(!(msg->flags & ACK_FLAGS_DROPPED)) {
if((msg->flags & ACK_FLAGS_DROPPED) == 0) {
/* If the packet was successfully received, we send the next packet. */
send_next_packet(tc);
} else {
@ -780,6 +806,9 @@ handle_ack(struct collect_conn *tc)
send_queued_packet(tc);
}
}
/* Our neighbor's rtmetric needs to be updated, so we bump our
advertisements. */
if(msg->flags & ACK_FLAGS_RTMETRIC_NEEDS_UPDATE) {
bump_advertisement(tc);
}
@ -858,6 +887,15 @@ node_packet_received(struct unicast_conn *c, const rimeaddr_t *from)
rimeaddr_copy(&ack_to, packetbuf_addr(PACKETBUF_ADDR_SENDER));
packet_seqno = packetbuf_attr(PACKETBUF_ATTR_PACKET_ID);
/* If the queue is more than half filled, we add the CONGESTED
flag to our outgoing acks. */
if(DRAW_TREE) {
printf("#A s=%d\n", packetqueue_len(&tc->send_queue));
}
if(packetqueue_len(&tc->send_queue) >= MAX_SENDING_QUEUE / 2) {
ackflags |= ACK_FLAGS_CONGESTED;
}
for(i = 0; i < NUM_RECENT_PACKETS; i++) {
if(recent_packets[i].conn == tc &&
recent_packets[i].eseqno == packetbuf_attr(PACKETBUF_ATTR_EPACKET_ID) &&
@ -871,7 +909,7 @@ node_packet_received(struct unicast_conn *c, const rimeaddr_t *from)
packetbuf_attr(PACKETBUF_ATTR_EPACKET_ID),
packetbuf_addr(PACKETBUF_ADDR_SENDER)->u8[0],
packetbuf_addr(PACKETBUF_ADDR_SENDER)->u8[1]);
send_ack(tc, &ack_to, 0);
send_ack(tc, &ack_to, ackflags);
stats.duprecv++;
return;
}
@ -937,7 +975,6 @@ node_packet_received(struct unicast_conn *c, const rimeaddr_t *from)
if(hdr.rtmetric <= tc->rtmetric) {
ackflags |= ACK_FLAGS_RTMETRIC_NEEDS_UPDATE;
bump_advertisement(tc);
}
packetbuf_set_attr(PACKETBUF_ATTR_HOPS,
@ -957,7 +994,9 @@ node_packet_received(struct unicast_conn *c, const rimeaddr_t *from)
we are able to enqueue the packet, we send a positive ACK. If
we are unable to enqueue the packet, we send a negative ACK
to inform the sender that the packet was dropped due to
memory problems. */
memory problems. We first check the size of our sending
queue. */
if(packetqueue_enqueue_packetbuf(&tc->send_queue,
FORWARD_PACKET_LIFETIME, tc)) {
send_ack(tc, &ack_to, ackflags);
@ -965,7 +1004,7 @@ node_packet_received(struct unicast_conn *c, const rimeaddr_t *from)
} else {
send_ack(tc, &ack_to,
ackflags | ACK_FLAGS_DROPPED | ACK_FLAGS_CONGESTED);
PRINTF("%d.%d: packet dropped: no queue buffer available\n",
printf("%d.%d: packet dropped: no queue buffer available\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]);
stats.qdrop++;
}
@ -1016,8 +1055,8 @@ node_packet_sent(struct unicast_conn *c, int status, int transmissions)
/* Compute the retransmission timeout and set up the
retransmission timer. */
rexmit_time_scaling = tc->transmissions / (MAX_MAC_REXMITS + 1);
if(rexmit_time_scaling > 3) {
rexmit_time_scaling = 3;
if(rexmit_time_scaling > MAX_REXMIT_TIME_SCALING) {
rexmit_time_scaling = MAX_REXMIT_TIME_SCALING;
}
time = REXMIT_TIME << rexmit_time_scaling;
time = time / 2 + (random_rand() % (time / 2));
@ -1031,7 +1070,7 @@ static void
timedout(struct collect_conn *tc)
{
struct collect_neighbor *n;
PRINTF("%d.%d: timedout after %d retransmissions to %d.%d (max retransmissions %d): packet dropped\n",
printf("%d.%d: timedout after %d retransmissions to %d.%d (max retransmissions %d): packet dropped\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1], tc->transmissions,
tc->current_parent.u8[0], tc->current_parent.u8[1],
tc->max_rexmits);
@ -1328,7 +1367,7 @@ collect_send(struct collect_conn *tc, int rexmits)
send_queued_packet(tc);
return 1;
} else {
PRINTF("%d.%d: drop originated packet: no queuebuf\n",
printf("%d.%d: drop originated packet: no queuebuf\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]);
}
@ -1352,7 +1391,7 @@ collect_send(struct collect_conn *tc, int rexmits)
tc)) {
return 1;
} else {
PRINTF("%d.%d: drop originated packet: no queuebuf\n",
printf("%d.%d: drop originated packet: no queuebuf\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]);
}
}