Older ELF-loader code, may not work any longer

This commit is contained in:
ksb 2009-07-11 14:18:50 +00:00
parent 4a82069f15
commit 1658d6b42c
8 changed files with 1818 additions and 0 deletions

View file

@ -0,0 +1,523 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: codeprop-otf.c,v 1.1 2009/07/11 14:18:50 ksb Exp $
*/
/** \addtogroup esb
* @{ */
/**
*
* \file
* Code propagation and storage.
* \author
* Adam Dunkels <adam@sics.se>
*
* This file implements a simple form of code propagation, which
* allows a binary program to be downloaded and propagated throughout
* a network of devices.
*
* Features:
*
* Commands: load code, start code
* Point-to-point download over TCP
* Point-to-multipoint delivery over UDP broadcasts
* Versioning of code modules
*
* Procedure:
*
* 1. Receive code over TCP
* 2. Send code packets over UDP
*
* When a code packet is deemed to be missed, a NACK is sent. If a
* NACK is received, the sending restarts at the point in the
* binary where the NACK pointed to. (This is *not* very efficient,
* but simple to implement...)
*
* States:
*
* Receiving code header -> receiving code -> sending code
*
*/
#include <stdio.h>
#include "contiki-net.h"
#include "cfs/cfs.h"
#include "codeprop-otf.h"
#include "loader/elfloader-otf.h"
#include <string.h>
static const char *err_msgs[] =
{"OK\r\n", "Bad ELF header\r\n", "No symtab\r\n", "No strtab\r\n",
"No text\r\n", "Symbol not found\r\n", "Segment not found\r\n",
"No startpoint\r\n", "Unhandled relocation\r\n",
"Relocation out of range\r\n", "Relocations not sorted\r\n",
"Input error\r\n" , "Ouput error\r\n" };
#define CODEPROP_DATA_PORT 6510
/*static int random_rand(void) { return 1; }*/
#if 0
#define PRINTF(x) printf x
#else
#define PRINTF(x)
#endif
#define START_TIMEOUT 12 * CLOCK_SECOND
#define MISS_NACK_TIMEOUT (CLOCK_SECOND / 8) * (random_rand() % 8)
#define HIT_NACK_TIMEOUT (CLOCK_SECOND / 8) * (8 + random_rand() % 16)
#define NACK_REXMIT_TIMEOUT CLOCK_SECOND * (4 + random_rand() % 4)
#define WAITING_TIME CLOCK_SECOND * 10
#define NUM_SEND_DUPLICATES 2
#define UDPHEADERSIZE 8
#define UDPDATASIZE 32
struct codeprop_udphdr {
u16_t id;
u16_t type;
#define TYPE_DATA 0x0001
#define TYPE_NACK 0x0002
u16_t addr;
u16_t len;
u8_t data[UDPDATASIZE];
};
struct codeprop_tcphdr {
u16_t len;
u16_t pad;
};
static void uipcall(void *state);
PROCESS(codeprop_process, "Code propagator");
struct codeprop_state {
u8_t state;
#define STATE_NONE 0
#define STATE_RECEIVING_TCPDATA 1
#define STATE_RECEIVING_UDPDATA 2
#define STATE_SENDING_UDPDATA 3
u16_t count;
u16_t addr;
u16_t len;
u16_t id;
struct etimer sendtimer;
struct timer nacktimer, timer, starttimer;
u8_t received;
u8_t send_counter;
struct pt tcpthread_pt;
struct pt udpthread_pt;
struct pt recv_udpthread_pt;
};
static int fd;
static struct uip_udp_conn *udp_conn;
static struct codeprop_state s;
void system_log(char *msg);
static clock_time_t send_time;
#define CONNECTION_TIMEOUT (30 * CLOCK_SECOND)
/*---------------------------------------------------------------------*/
void
codeprop_set_rate(clock_time_t time)
{
send_time = time;
}
/*---------------------------------------------------------------------*/
PROCESS_THREAD(codeprop_process, ev, data)
{
PROCESS_BEGIN();
elfloader_init();
s.id = 0/*random_rand()*/;
send_time = CLOCK_SECOND/4;
PT_INIT(&s.udpthread_pt);
PT_INIT(&s.recv_udpthread_pt);
tcp_listen(HTONS(CODEPROP_DATA_PORT));
udp_conn = udp_broadcast_new(HTONS(CODEPROP_DATA_PORT), NULL);
s.state = STATE_NONE;
s.received = 0;
s.addr = 0;
s.len = 0;
fd = cfs_open("codeprop-image", CFS_READ | CFS_WRITE);
while(1) {
PROCESS_YIELD();
if(ev == tcpip_event) {
uipcall(data);
} else if(ev == PROCESS_EVENT_TIMER) {
tcpip_poll_udp(udp_conn);
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------*/
static u16_t
send_udpdata(struct codeprop_udphdr *uh)
{
u16_t len;
uh->type = HTONS(TYPE_DATA);
uh->addr = htons(s.addr);
uh->id = htons(s.id);
if(s.len - s.addr > UDPDATASIZE) {
len = UDPDATASIZE;
} else {
len = s.len - s.addr;
}
cfs_seek(fd, s.addr, CFS_SEEK_SET);
cfs_read(fd, (char*)&uh->data[0], len);
/* eeprom_read(EEPROMFS_ADDR_CODEPROP + s.addr,
&uh->data[0], len);*/
uh->len = htons(s.len);
PRINTF(("codeprop: sending packet from address 0x%04x\n", s.addr));
uip_udp_send(len + UDPHEADERSIZE);
return len;
}
/*---------------------------------------------------------------------*/
static
PT_THREAD(send_udpthread(struct pt *pt))
{
int len;
struct codeprop_udphdr *uh = (struct codeprop_udphdr *)uip_appdata;
PT_BEGIN(pt);
while(1) {
PT_WAIT_UNTIL(pt, s.state == STATE_SENDING_UDPDATA);
for(s.addr = 0; s.addr < s.len; ) {
len = send_udpdata(uh);
s.addr += len;
etimer_set(&s.sendtimer, CLOCK_SECOND/4);
do {
PT_WAIT_UNTIL(pt, uip_newdata() || etimer_expired(&s.sendtimer));
if(uip_newdata()) {
if(uh->type == HTONS(TYPE_NACK)) {
PRINTF(("send_udpthread: got NACK for address 0x%x (now 0x%x)\n",
htons(uh->addr), s.addr));
/* Only accept a NACK if it points to a lower byte. */
if(htons(uh->addr) <= s.addr) {
/* beep();*/
s.addr = htons(uh->addr);
}
}
PT_YIELD(pt);
}
} while(!etimer_expired(&s.sendtimer));
}
s.state = STATE_NONE;
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, (process_data_t)NULL); */
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
static void
send_nack(struct codeprop_udphdr *uh, unsigned short addr)
{
uh->type = HTONS(TYPE_NACK);
uh->addr = htons(addr);
uip_udp_send(UDPHEADERSIZE);
}
/*---------------------------------------------------------------------*/
static
PT_THREAD(recv_udpthread(struct pt *pt))
{
int len;
struct codeprop_udphdr *uh = (struct codeprop_udphdr *)uip_appdata;
/* if(uip_newdata()) {
PRINTF(("recv_udpthread: id %d uh->id %d\n", s.id, htons(uh->id)));
}*/
PT_BEGIN(pt);
while(1) {
do {
PT_WAIT_UNTIL(pt, uip_newdata() &&
uh->type == HTONS(TYPE_DATA) &&
htons(uh->id) > s.id);
if(htons(uh->addr) != 0) {
s.addr = 0;
send_nack(uh, 0);
}
} while(htons(uh->addr) != 0);
/* leds_on(LEDS_YELLOW);
beep_down(10000);*/
s.addr = 0;
s.id = htons(uh->id);
s.len = htons(uh->len);
timer_set(&s.timer, CONNECTION_TIMEOUT);
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, (process_data_t)NULL); */
while(s.addr < s.len) {
if(htons(uh->addr) == s.addr) {
/* leds_blink();*/
len = uip_datalen() - UDPHEADERSIZE;
if(len > 0) {
/* eeprom_write(EEPROMFS_ADDR_CODEPROP + s.addr,
&uh->data[0], len);*/
cfs_seek(fd, s.addr, CFS_SEEK_SET);
cfs_write(fd, (char*)&uh->data[0], len);
/* beep();*/
PRINTF(("Saved %d bytes at address %d, %d bytes left\n",
uip_datalen() - UDPHEADERSIZE, s.addr,
s.len - s.addr));
s.addr += len;
}
} else if(htons(uh->addr) > s.addr) {
PRINTF(("sending nack since 0x%x != 0x%x\n", htons(uh->addr), s.addr));
send_nack(uh, s.addr);
}
if(s.addr < s.len) {
/* timer_set(&s.nacktimer, NACK_TIMEOUT);*/
do {
timer_set(&s.nacktimer, HIT_NACK_TIMEOUT);
PT_YIELD_UNTIL(pt, timer_expired(&s.nacktimer) ||
(uip_newdata() &&
uh->type == HTONS(TYPE_DATA) &&
htons(uh->id) == s.id));
if(timer_expired(&s.nacktimer)) {
send_nack(uh, s.addr);
}
} while(timer_expired(&s.nacktimer));
}
}
/* leds_off(LEDS_YELLOW);
beep_quick(2);*/
/* printf("Received entire bunary over udr\n");*/
codeprop_start_program();
PT_EXIT(pt);
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
#define CODEPROP_TCPHDR_SIZE sizeof(struct codeprop_tcphdr)
static
PT_THREAD(recv_tcpthread(struct pt *pt))
{
struct codeprop_tcphdr *th;
int datalen = uip_datalen();
PT_BEGIN(pt);
while(1) {
PT_WAIT_UNTIL(pt, uip_connected());
codeprop_exit_program();
s.state = STATE_RECEIVING_TCPDATA;
s.addr = 0;
s.count = 0;
/* Read the header. */
PT_WAIT_UNTIL(pt, uip_newdata() && uip_datalen() > 0);
if(uip_datalen() < CODEPROP_TCPHDR_SIZE) {
PRINTF(("codeprop: header not found in first tcp segment\n"));
uip_abort();
}
th = (struct codeprop_tcphdr *)uip_appdata;
s.len = htons(th->len);
s.addr = 0;
uip_appdata += CODEPROP_TCPHDR_SIZE;
datalen -= CODEPROP_TCPHDR_SIZE;
/* Read the rest of the data. */
do {
if(datalen > 0) {
/* printf("Got %d bytes\n", datalen); */
if (cfs_seek(fd, s.addr, CFS_SEEK_SET) != s.addr) {
PRINTF(("codeprop: seek in buffer file failed\n"));
uip_abort();
}
if (cfs_write(fd, uip_appdata, datalen) != datalen) {
PRINTF(("codeprop: write to buffer file failed\n"));
uip_abort();
}
s.addr += datalen;
}
if(s.addr < s.len) {
PT_YIELD_UNTIL(pt, uip_newdata());
}
} while(s.addr < s.len);
#if 1
{
static int err;
err = codeprop_start_program();
/* Print out the "OK"/error message. */
do {
if (err >= 0 && err < sizeof(err_msgs)/sizeof(char*)) {
uip_send(err_msgs[err], strlen(err_msgs[err]));
} else {
uip_send("Unknown error\r\n", 15);
}
PT_WAIT_UNTIL(pt, uip_acked() || uip_rexmit() || uip_closed());
} while(uip_rexmit());
/* Close the connection. */
uip_close();
}
#endif
++s.id;
s.state = STATE_SENDING_UDPDATA;
tcpip_poll_udp(udp_conn);
PT_WAIT_UNTIL(pt, s.state != STATE_SENDING_UDPDATA);
/* printf("recv_tcpthread: unblocked\n");*/
}
PT_END(pt);
}
/*---------------------------------------------------------------------*/
void
codeprop_start_broadcast(unsigned int len)
{
s.addr = 0;
s.len = len;
++s.id;
s.state = STATE_SENDING_UDPDATA;
tcpip_poll_udp(udp_conn);
}
/*---------------------------------------------------------------------*/
void
codeprop_exit_program(void)
{
if(elfloader_autostart_processes != NULL) {
autostart_exit(elfloader_autostart_processes);
}
}
/*---------------------------------------------------------------------*/
int
codeprop_start_program(void)
{
int err;
codeprop_exit_program();
err = elfloader_load(fd, codeprop_output);
if(err == ELFLOADER_OK) {
PRINTF(("codeprop: starting %s\n",
elfloader_autostart_processes[0]->name));
autostart_start(elfloader_autostart_processes);
}
return err;
}
/*---------------------------------------------------------------------*/
static void
uipcall(void *state)
{
if(uip_udpconnection()) {
recv_udpthread(&s.recv_udpthread_pt);
send_udpthread(&s.udpthread_pt);
} else {
if(uip_conn->lport == HTONS(CODEPROP_DATA_PORT)) {
if(uip_connected()) {
if(state == NULL) {
s.addr = 0;
s.count = 0;
PT_INIT(&s.tcpthread_pt);
process_poll(&codeprop_process);
tcp_markconn(uip_conn, &s);
/* process_post(PROCESS_BROADCAST, codeprop_event_quit, */
/* (process_data_t)NULL); */
} else {
PRINTF(("codeprop: uip_connected() and state != NULL\n"));
uip_abort();
}
}
recv_tcpthread(&s.tcpthread_pt);
if(uip_closed() || uip_aborted() || uip_timedout()) {
PRINTF(("codeprop: connection down\n"));
tcp_markconn(uip_conn, NULL);
}
}
}
}
/*---------------------------------------------------------------------*/
/** @} */

View file

@ -0,0 +1,52 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: codeprop-otf.h,v 1.1 2009/07/11 14:18:50 ksb Exp $
*/
#ifndef __CODEPROP_H__
#define __CODEPROP_H__
#include "contiki.h"
#define CODEPROP_DATA_PORT 6510
PROCESS_NAME(codeprop_process);
void codeprop_set_rate(clock_time_t time);
void codeprop_start_broadcast(unsigned int len);
void codeprop_exit_program(void);
int codeprop_start_program(void);
/* Segment writing object */
extern struct elfloader_output *codeprop_output;
extern char *codeprop_filesystem;
#endif /* __CODEPROP_H__ */

View file

@ -0,0 +1,101 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: elfloader-arch-otf.h,v 1.1 2009/07/11 14:18:50 ksb Exp $
*/
/**
* \addtogroup elfloader
* @{
*/
/**
* \defgroup elfloaderarch Architecture specific functionality for the ELF loader.
*
* The architecture specific functionality for the Contiki ELF loader
* has to be implemented for each processor type Contiki runs on.
*
* Since the ELF format is slightly different for different processor
* types, the Contiki ELF loader is divided into two parts: the
* generic ELF loader module (\ref elfloader) and the architecture
* specific part (this module). The architecture specific part deals
* with memory allocation, code and data relocation, and writing the
* relocated ELF code into program memory.
*
* To port the Contiki ELF loader to a new processor type, this module
* has to be implemented for the new processor type.
*
* @{
*/
/**
* \file
* Header file for the architecture specific parts of the Contiki ELF loader.
*
* \author
* Adam Dunkels <adam@sics.se>
*
*/
#ifndef __ELFLOADER_ARCH_H__
#define __ELFLOADER_ARCH_H__
#include "elfloader-otf.h"
/**
* \brief Perform a relocation.
* \param output The output object for the segment.
* \param sectionoffset The file offset at which the relocation can be found.
* \param sectionaddr The section start address (absolute runtime).
* \param rela A pointer to an ELF32 rela structure (struct elf32_rela).
* \param addr The relocated address.
*
* This function is called from the Contiki ELF loader to
* perform a relocation on a piece of code or data. The
* relocated address is calculated by the Contiki ELF
* loader, based on information in the ELF file, and it is
* the responsibility of this function to patch the
* executable code. The Contiki ELF loader passes a
* pointer to an ELF32 rela structure (struct elf32_rela)
* that contains information about how to patch the
* code. This information is different from processor to
* processor.
*/
int elfloader_arch_relocate(int input_fd,
struct elfloader_output *output,
unsigned int sectionoffset,
char *sectionaddr,
struct elf32_rela *rela, char *addr);
#endif /* __ELFLOADER_ARCH_H__ */
/** @} */
/** @} */

View file

@ -0,0 +1,680 @@
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
* @(#)$Id: elfloader-otf.c,v 1.1 2009/07/11 14:18:50 ksb Exp $
*/
#include "contiki.h"
#include "loader/elfloader-otf.h"
#include "loader/elfloader-arch-otf.h"
#include "cfs/cfs.h"
#include "loader/symtab.h"
#include <stddef.h>
#include <string.h>
#include <stdio.h>
#if 0
#include <stdio.h>
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...) do {} while (0)
#endif
#define EI_NIDENT 16
struct elf32_ehdr {
unsigned char e_ident[EI_NIDENT]; /* ident bytes */
elf32_half e_type; /* file type */
elf32_half e_machine; /* target machine */
elf32_word e_version; /* file version */
elf32_addr e_entry; /* start address */
elf32_off e_phoff; /* phdr file offset */
elf32_off e_shoff; /* shdr file offset */
elf32_word e_flags; /* file flags */
elf32_half e_ehsize; /* sizeof ehdr */
elf32_half e_phentsize; /* sizeof phdr */
elf32_half e_phnum; /* number phdrs */
elf32_half e_shentsize; /* sizeof shdr */
elf32_half e_shnum; /* number shdrs */
elf32_half e_shstrndx; /* shdr string index */
};
/* Values for e_type. */
#define ET_NONE 0 /* Unknown type. */
#define ET_REL 1 /* Relocatable. */
#define ET_EXEC 2 /* Executable. */
#define ET_DYN 3 /* Shared object. */
#define ET_CORE 4 /* Core file. */
struct elf32_shdr {
elf32_word sh_name; /* section name */
elf32_word sh_type; /* SHT_... */
elf32_word sh_flags; /* SHF_... */
elf32_addr sh_addr; /* virtual address */
elf32_off sh_offset; /* file offset */
elf32_word sh_size; /* section size */
elf32_word sh_link; /* misc info */
elf32_word sh_info; /* misc info */
elf32_word sh_addralign; /* memory alignment */
elf32_word sh_entsize; /* entry size if table */
};
/* sh_type */
#define SHT_NULL 0 /* inactive */
#define SHT_PROGBITS 1 /* program defined information */
#define SHT_SYMTAB 2 /* symbol table section */
#define SHT_STRTAB 3 /* string table section */
#define SHT_RELA 4 /* relocation section with addends*/
#define SHT_HASH 5 /* symbol hash table section */
#define SHT_DYNAMIC 6 /* dynamic section */
#define SHT_NOTE 7 /* note section */
#define SHT_NOBITS 8 /* no space section */
#define SHT_REL 9 /* relation section without addends */
#define SHT_SHLIB 10 /* reserved - purpose unknown */
#define SHT_DYNSYM 11 /* dynamic symbol table section */
#define SHT_LOPROC 0x70000000 /* reserved range for processor */
#define SHT_HIPROC 0x7fffffff /* specific section header types */
#define SHT_LOUSER 0x80000000 /* reserved range for application */
#define SHT_HIUSER 0xffffffff /* specific indexes */
struct elf32_rel {
elf32_addr r_offset; /* Location to be relocated. */
elf32_word r_info; /* Relocation type and symbol index. */
};
struct elf32_sym {
elf32_word st_name; /* String table index of name. */
elf32_addr st_value; /* Symbol value. */
elf32_word st_size; /* Size of associated object. */
unsigned char st_info; /* Type and binding information. */
unsigned char st_other; /* Reserved (not used). */
elf32_half st_shndx; /* Section index of symbol. */
};
#define ELF32_R_SYM(info) ((info) >> 8)
#define ELF32_R_TYPE(info) ((unsigned char)(info))
struct relevant_section {
unsigned char number;
unsigned int offset;
char *address;
};
char elfloader_unknown[30]; /* Name that caused link error. */
struct process **elfloader_autostart_processes;
static struct relevant_section bss, data, rodata, text;
const static unsigned char elf_magic_header[] =
{0x7f, 0x45, 0x4c, 0x46, /* 0x7f, 'E', 'L', 'F' */
0x01, /* Only 32-bit objects. */
0x01, /* Only LSB data. */
0x01, /* Only ELF version 1. */
};
/* Copy data from the elf file to a segment */
static int
copy_segment_data(int input_fd, unsigned int offset,
struct elfloader_output *output, unsigned int len)
{
char buffer[16];
int res;
if (cfs_seek(input_fd, offset, CFS_SEEK_SET) != offset) return ELFLOADER_INPUT_ERROR;
while(len > sizeof(buffer)) {
res = cfs_read(input_fd, buffer, sizeof(buffer));
if (res != sizeof(buffer)) return ELFLOADER_INPUT_ERROR;
res = elfloader_output_write_segment(output, buffer, sizeof(buffer));
if (res != sizeof(buffer)) return ELFLOADER_OUTPUT_ERROR;
len -= sizeof(buffer);
}
res = cfs_read(input_fd, buffer, len);
if (res != len) return ELFLOADER_INPUT_ERROR;
res = elfloader_output_write_segment(output, buffer, len);
if (res != len) return ELFLOADER_OUTPUT_ERROR;
return ELFLOADER_OK;
}
static int
seek_read(int fd, unsigned int offset, char *buf, int len)
{
if (cfs_seek(fd, offset, CFS_SEEK_SET) != offset) return -1;
return cfs_read(fd, buf, len);
}
static void *
find_local_symbol(int input_fd, const char *symbol,
unsigned int symtab, unsigned short symtabsize,
unsigned int strtab)
{
struct elf32_sym s;
unsigned int a;
char name[30];
struct relevant_section *sect;
int ret;
for(a = symtab; a < symtab + symtabsize; a += sizeof(s)) {
ret = seek_read(input_fd, a, (char *)&s, sizeof(s));
if (ret < 0) return NULL;
if(s.st_name != 0) {
ret = seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if (ret < 0) return NULL;
if(strcmp(name, symbol) == 0) {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
return NULL;
}
return &(sect->address[s.st_value]);
}
}
}
return NULL;
}
/*---------------------------------------------------------------------------*/
static int
relocate_section(int input_fd,
struct elfloader_output *output,
unsigned int section, unsigned short size,
unsigned int sectionaddr,
char *sectionbase,
unsigned int strs,
unsigned int strtab,
unsigned int symtab, unsigned short symtabsize,
unsigned char using_relas)
{
/* sectionbase added; runtime start address of current section */
struct elf32_rela rela; /* Now used both for rel and rela data! */
int rel_size = 0;
struct elf32_sym s;
unsigned int a;
char name[30];
char *addr;
struct relevant_section *sect;
int ret;
/* determine correct relocation entry sizes */
if(using_relas) {
rel_size = sizeof(struct elf32_rela);
} else {
rel_size = sizeof(struct elf32_rel);
}
for(a = section; a < section + size; a += rel_size) {
ret = seek_read(input_fd, a, (char *)&rela, rel_size);
if (ret < 0) return ELFLOADER_INPUT_ERROR;
ret = seek_read(input_fd,
(symtab +
sizeof(struct elf32_sym) * ELF32_R_SYM(rela.r_info)),
(char *)&s, sizeof(s));
if (ret < 0) return ELFLOADER_INPUT_ERROR;
if(s.st_name != 0) {
ret = seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if (ret < 0) return ELFLOADER_INPUT_ERROR;
PRINTF("name: %s\n", name);
addr = (char *)symtab_lookup(name);
/* ADDED */
if(addr == NULL) {
PRINTF("name not found in global: %s\n", name);
addr = find_local_symbol(input_fd, name, symtab, symtabsize, strtab);
PRINTF("found address %p\n", addr);
}
if(addr == NULL) {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == rodata.number) {
sect = &rodata;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
PRINTF("elfloader unknown name: '%30s'\n", name);
memcpy(elfloader_unknown, name, sizeof(elfloader_unknown));
elfloader_unknown[sizeof(elfloader_unknown) - 1] = 0;
return ELFLOADER_SYMBOL_NOT_FOUND;
}
addr = sect->address;
}
} else {
if(s.st_shndx == bss.number) {
sect = &bss;
} else if(s.st_shndx == data.number) {
sect = &data;
} else if(s.st_shndx == rodata.number) {
sect = &rodata;
} else if(s.st_shndx == text.number) {
sect = &text;
} else {
return ELFLOADER_SEGMENT_NOT_FOUND;
}
addr = sect->address;
}
#if 0 /* We don't know how big the relocation is or even if we need to read it.
Let the architecture dependant code decide */
if (!using_relas) {
/* copy addend to rela structure */
ret = seek_read(fd, sectionaddr + rela.r_offset, &rela.r_addend, 4);
if (ret < 0) return ELFLOADER_INPUT_ERROR;
}
#endif
{
/* Copy data up to the next relocation */
unsigned int offset = elfloader_output_segment_offset(output);
if (rela.r_offset < offset) {
PRINTF("elfloader relocation out of offset order\n");
}
if (rela.r_offset > offset) {
ret = copy_segment_data(input_fd, offset+sectionaddr, output,
rela.r_offset - offset);
if (ret != ELFLOADER_OK) return ret;
}
}
ret = elfloader_arch_relocate(input_fd, output, sectionaddr, sectionbase,
&rela, addr);
if (ret != ELFLOADER_OK) return ret;
}
return ELFLOADER_OK;
}
/*---------------------------------------------------------------------------*/
static void *
find_program_processes(int input_fd,
unsigned int symtab, unsigned short size,
unsigned int strtab)
{
struct elf32_sym s;
unsigned int a;
char name[30];
for(a = symtab; a < symtab + size; a += sizeof(s)) {
seek_read(input_fd, a, (char *)&s, sizeof(s));
if(s.st_name != 0) {
seek_read(input_fd, strtab + s.st_name, name, sizeof(name));
if(strcmp(name, "autostart_processes") == 0) {
return &data.address[s.st_value];
}
}
}
return NULL;
/* return find_local_symbol(fd, "autostart_processes", symtab, size, strtab); */
}
/*---------------------------------------------------------------------------*/
void
elfloader_init(void)
{
elfloader_autostart_processes = NULL;
}
/*---------------------------------------------------------------------------*/
#if 0
static void
print_chars(unsigned char *ptr, int num)
{
int i;
for(i = 0; i < num; ++i) {
PRINTF("%d", ptr[i]);
if(i == num - 1) {
PRINTF("\n");
} else {
PRINTF(", ");
}
}
}
#endif /* 0 */
static int
copy_segment(int input_fd,
struct elfloader_output *output,
unsigned int section, unsigned short size,
unsigned int sectionaddr,
char *sectionbase,
unsigned int strs,
unsigned int strtab,
unsigned int symtab, unsigned short symtabsize,
unsigned char using_relas,
unsigned int seg_size, unsigned int seg_type)
{
unsigned int offset;
int ret;
ret = elfloader_output_start_segment(output, seg_type,sectionbase, seg_size);
if (ret != ELFLOADER_OK) return ret;
ret = relocate_section(input_fd, output,
section, size,
sectionaddr,
sectionbase,
strs,
strtab,
symtab, symtabsize, using_relas);
if (ret != ELFLOADER_OK) return ret;
offset = elfloader_output_segment_offset(output);
ret = copy_segment_data(input_fd, offset+sectionaddr, output,seg_size - offset);
if (ret != ELFLOADER_OK) return ret;
return elfloader_output_end_segment(output);
}
/*---------------------------------------------------------------------------*/
int
elfloader_load(int input_fd, struct elfloader_output *output)
{
struct elf32_ehdr ehdr;
struct elf32_shdr shdr;
struct elf32_shdr strtable;
unsigned int strs;
unsigned int shdrptr;
unsigned int nameptr;
char name[12];
int i;
unsigned short shdrnum, shdrsize;
unsigned char using_relas = -1;
unsigned short textoff = 0, textsize, textrelaoff = 0, textrelasize;
unsigned short dataoff = 0, datasize, datarelaoff = 0, datarelasize;
unsigned short rodataoff = 0, rodatasize, rodatarelaoff = 0, rodatarelasize;
unsigned short symtaboff = 0, symtabsize;
unsigned short strtaboff = 0, strtabsize;
unsigned short bsssize = 0;
struct process **process;
int ret;
elfloader_unknown[0] = 0;
/* The ELF header is located at the start of the buffer. */
ret = seek_read(input_fd, 0, (char *)&ehdr, sizeof(ehdr));
if (ret != sizeof(ehdr)) return ELFLOADER_INPUT_ERROR;
/* print_chars(ehdr.e_ident, sizeof(elf_magic_header));
print_chars(elf_magic_header, sizeof(elf_magic_header));*/
/* Make sure that we have a correct and compatible ELF header. */
if(memcmp(ehdr.e_ident, elf_magic_header, sizeof(elf_magic_header)) != 0) {
PRINTF("ELF header problems\n");
return ELFLOADER_BAD_ELF_HEADER;
}
/* Grab the section header. */
shdrptr = ehdr.e_shoff;
ret = seek_read(input_fd, shdrptr, (char *)&shdr, sizeof(shdr));
if (ret != sizeof(shdr)) return ELFLOADER_INPUT_ERROR;
/* Get the size and number of entries of the section header. */
shdrsize = ehdr.e_shentsize;
shdrnum = ehdr.e_shnum;
/* The string table section: holds the names of the sections. */
ret = seek_read(input_fd, ehdr.e_shoff + shdrsize * ehdr.e_shstrndx,
(char *)&strtable, sizeof(strtable));
if (ret != sizeof(strtable)) return ELFLOADER_INPUT_ERROR;
/* Get a pointer to the actual table of strings. This table holds
the names of the sections, not the names of other symbols in the
file (these are in the sybtam section). */
strs = strtable.sh_offset;
/* Go through all sections and pick out the relevant ones. The
".text" segment holds the actual code from the ELF file, the
".data" segment contains initialized data, the ".rodata" segment
contains read-only data, the ".bss" segment holds the size of the
unitialized data segment. The ".rel[a].text" and ".rel[a].data"
segments contains relocation information for the contents of the
".text" and ".data" segments, respectively. The ".symtab" segment
contains the symbol table for this file. The ".strtab" segment
points to the actual string names used by the symbol table.
In addition to grabbing pointers to the relevant sections, we
also save the section number for resolving addresses in the
relocator code.
*/
/* Initialize the segment sizes to zero so that we can check if
their sections was found in the file or not. */
textsize = textrelasize = datasize = datarelasize =
rodatasize = rodatarelasize = symtabsize = strtabsize = 0;
bss.number = data.number = rodata.number = text.number = -1;
shdrptr = ehdr.e_shoff;
for(i = 0; i < shdrnum; ++i) {
ret = seek_read(input_fd, shdrptr, (char *)&shdr, sizeof(shdr));
if (ret != sizeof(shdr)) return ELFLOADER_INPUT_ERROR;
/* The name of the section is contained in the strings table. */
nameptr = strs + shdr.sh_name;
ret = seek_read(input_fd, nameptr, name, sizeof(name));
if (ret != sizeof(name)) return ELFLOADER_INPUT_ERROR;
/* Match the name of the section with a predefined set of names
(.text, .data, .bss, .rela.text, .rela.data, .symtab, and
.strtab). */
/* added support for .rodata, .rel.text and .rel.data). */
if(strncmp(name, ".text", 5) == 0) {
textoff = shdr.sh_offset;
textsize = shdr.sh_size;
text.number = i;
text.offset = textoff;
} else if(strncmp(name, ".rel.text", 9) == 0) {
using_relas = 0;
textrelaoff = shdr.sh_offset;
textrelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.text", 10) == 0) {
using_relas = 1;
textrelaoff = shdr.sh_offset;
textrelasize = shdr.sh_size;
} else if(strncmp(name, ".data", 5) == 0) {
dataoff = shdr.sh_offset;
datasize = shdr.sh_size;
data.number = i;
data.offset = dataoff;
} else if(strncmp(name, ".rodata", 7) == 0) {
/* read-only data handled the same way as regular text section */
rodataoff = shdr.sh_offset;
rodatasize = shdr.sh_size;
rodata.number = i;
rodata.offset = rodataoff;
} else if(strncmp(name, ".rel.rodata", 11) == 0) {
/* using elf32_rel instead of rela */
using_relas = 0;
rodatarelaoff = shdr.sh_offset;
rodatarelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.rodata", 12) == 0) {
using_relas = 1;
rodatarelaoff = shdr.sh_offset;
rodatarelasize = shdr.sh_size;
} else if(strncmp(name, ".rel.data", 9) == 0) {
/* using elf32_rel instead of rela */
using_relas = 0;
datarelaoff = shdr.sh_offset;
datarelasize = shdr.sh_size;
} else if(strncmp(name, ".rela.data", 10) == 0) {
using_relas = 1;
datarelaoff = shdr.sh_offset;
datarelasize = shdr.sh_size;
} else if(strncmp(name, ".symtab", 7) == 0) {
symtaboff = shdr.sh_offset;
symtabsize = shdr.sh_size;
} else if(strncmp(name, ".strtab", 7) == 0) {
strtaboff = shdr.sh_offset;
strtabsize = shdr.sh_size;
} else if(strncmp(name, ".bss", 4) == 0) {
bsssize = shdr.sh_size;
bss.number = i;
bss.offset = 0;
}
/* Move on to the next section header. */
shdrptr += shdrsize;
}
if(symtabsize == 0) {
return ELFLOADER_NO_SYMTAB;
}
if(strtabsize == 0) {
return ELFLOADER_NO_STRTAB;
}
if(textsize == 0) {
return ELFLOADER_NO_TEXT;
}
if (bsssize) {
bss.address = (char *)
elfloader_output_alloc_segment(output, ELFLOADER_SEG_BSS, bsssize);
if (!bss.address) return ELFLOADER_OUTPUT_ERROR;
}
if (datasize) {
data.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_DATA,datasize);
if (!data.address) return ELFLOADER_OUTPUT_ERROR;
}
if (textsize) {
text.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_TEXT,textsize);
if (!text.address) return ELFLOADER_OUTPUT_ERROR;
}
if (rodatasize) {
rodata.address = (char *)
elfloader_output_alloc_segment(output,ELFLOADER_SEG_RODATA,rodatasize);
if (!rodata.address) return ELFLOADER_OUTPUT_ERROR;
}
/* printf("bss base address: bss.address = 0x%08x\n", bss.address);
printf("data base address: data.address = 0x%08x\n", data.address);
printf("text base address: text.address = 0x%08x\n", text.address);
printf("rodata base address: rodata.address = 0x%08x\n", rodata.address); */
/* If we have text segment relocations, we process them. */
PRINTF("elfloader: relocate text\n");
if(textrelasize > 0) {
ret = copy_segment(input_fd, output,
textrelaoff, textrelasize,
textoff,
text.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
textsize, ELFLOADER_SEG_TEXT);
if(ret != ELFLOADER_OK) {
return ret;
}
}
/* If we have any rodata segment relocations, we process them too. */
PRINTF("elfloader: relocate rodata\n");
if(rodatarelasize > 0) {
ret = copy_segment(input_fd, output,
rodatarelaoff, rodatarelasize,
rodataoff,
rodata.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
rodatasize, ELFLOADER_SEG_RODATA);
if(ret != ELFLOADER_OK) {
PRINTF("elfloader: data failed\n");
return ret;
}
}
/* If we have any data segment relocations, we process them too. */
PRINTF("elfloader: relocate data\n");
if(datarelasize > 0) {
ret = copy_segment(input_fd, output,
datarelaoff, datarelasize,
dataoff,
data.address,
strs,
strtaboff,
symtaboff, symtabsize, using_relas,
datasize, ELFLOADER_SEG_DATA);
if(ret != ELFLOADER_OK) {
PRINTF("elfloader: data failed\n");
return ret;
}
ret = elfloader_output_end_segment(output);
if (ret != ELFLOADER_OK) return ret;
}
/* Write text and rodata segment into flash and data segment into RAM. */
/* elfloader_arch_write_rom(fd, textoff, textsize, text.address); */
/* elfloader_arch_write_rom(fd, rodataoff, rodatasize, rodata.address); */
/* memset(bss.address, 0, bsssize); */
/* seek_read(fd, dataoff, data.address, datasize); */
{
/* Write zeros to bss segment */
unsigned int len = bsssize;
static const char zeros[16] = {0};
ret = elfloader_output_start_segment(output, ELFLOADER_SEG_BSS,
bss.address,bsssize);
if (ret != ELFLOADER_OK) return ret;
while(len > sizeof(zeros)) {
ret = elfloader_output_write_segment(output, zeros, sizeof(zeros));
if (ret != sizeof(zeros)) return ELFLOADER_OUTPUT_ERROR;
len -= sizeof(zeros);
}
ret = elfloader_output_write_segment(output, zeros, len);
if (ret != len) return ELFLOADER_OUTPUT_ERROR;
}
PRINTF("elfloader: autostart search\n");
process = find_local_symbol(input_fd, "autostart_processes", symtaboff, symtabsize, strtaboff);
if(process != NULL) {
PRINTF("elfloader: autostart found\n");
elfloader_autostart_processes = process;
return ELFLOADER_OK;
} else {
PRINTF("elfloader: no autostart\n");
process = find_program_processes(input_fd, symtaboff, symtabsize, strtaboff);
if(process != NULL) {
PRINTF("elfloader: FOUND PRG\n");
}
return ELFLOADER_NO_STARTPOINT;
}
}
/*---------------------------------------------------------------------------*/

View file

@ -0,0 +1,314 @@
/**
* \addtogroup loader
* @{
*/
/**
* \defgroup elfloader The Contiki ELF loader
*
* The Contiki ELF loader links, relocates, and loads ELF
* (Executable Linkable Format) object files into a running Contiki
* system.
*
* ELF is a standard format for relocatable object code and executable
* files. ELF is the standard program format for Linux, Solaris, and
* other operating systems.
*
* An ELF file contains either a standalone executable program or a
* program module. The file contains both the program code, the
* program data, as well as information about how to link, relocate,
* and load the program into a running system.
*
* The ELF file is composed of a set of sections. The sections contain
* program code, data, or relocation information, but can also contain
* debugging information.
*
* To link and relocate an ELF file, the Contiki ELF loader first
* parses the ELF file structure to find the appropriate ELF
* sections. It then allocates memory for the program code and data in
* ROM and RAM, respectively. After allocating memory, the Contiki ELF
* loader starts relocating the code found in the ELF file.
*
* @{
*/
/**
* \file
* Header file for the Contiki ELF loader.
* \author
* Adam Dunkels <adam@sics.se>
* Simon Berg <ksb@users.sourceforge.net>
*
*/
/*
* Copyright (c) 2005, Swedish Institute of Computer Science
* Copyright (c) 2007, Simon Berg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
#ifndef __ELFLOADER_H__
#define __ELFLOADER_H__
#include "cfs/cfs.h"
/**
* Return value from elfloader_load() indicating that loading worked.
*/
#define ELFLOADER_OK 0
/**
* Return value from elfloader_load() indicating that the ELF file had
* a bad header.
*/
#define ELFLOADER_BAD_ELF_HEADER 1
/**
* Return value from elfloader_load() indicating that no symbol table
* could be find in the ELF file.
*/
#define ELFLOADER_NO_SYMTAB 2
/**
* Return value from elfloader_load() indicating that no string table
* could be find in the ELF file.
*/
#define ELFLOADER_NO_STRTAB 3
/**
* Return value from elfloader_load() indicating that the size of the
* .text segment was zero.
*/
#define ELFLOADER_NO_TEXT 4
/**
* Return value from elfloader_load() indicating that a symbol
* specific symbol could not be found.
*
* If this value is returned from elfloader_load(), the symbol has
* been copied into the elfloader_unknown[] array.
*/
#define ELFLOADER_SYMBOL_NOT_FOUND 5
/**
* Return value from elfloader_load() indicating that one of the
* required segments (.data, .bss, or .text) could not be found.
*/
#define ELFLOADER_SEGMENT_NOT_FOUND 6
/**
* Return value from elfloader_load() indicating that no starting
* point could be found in the loaded module.
*/
#define ELFLOADER_NO_STARTPOINT 7
/**
* Return value from elfloader_load() indicating that the ELF file contained
* a relocation type that the implementation can't handle.
*/
#define ELFLOADER_UNHANDLED_RELOC 8
/**
* Return value from elfloader_load() indicating that the offset for
* a relative addressing mode was too big.
*/
#define ELFLOADER_OUTOF_RANGE 9
/**
* Return value from elfloader_load() indicating that the relocations
* where not sorted by offset
*/
#define ELFLOADER_RELOC_NOT_SORTED 10
/**
* Return value from elfloader_load() indicating that reading from the
* ELF file failed in some way.
*/
#define ELFLOADER_INPUT_ERROR 11
/**
* Return value from elfloader_load() indicating that writing to a segment
* failed.
*/
#define ELFLOADER_OUTPUT_ERROR 12
#define ELFLOADER_SEG_TEXT 1
#define ELFLOADER_SEG_RODATA 2
#define ELFLOADER_SEG_DATA 3
#define ELFLOADER_SEG_BSS 4
/**
* elfloader output object
*
* This object defines methods (callbacks) for writing the segments to memory.
* It can be extended by the user to include any necessary state.
*/
struct elfloader_output {
const struct elfloader_output_ops *ops;
};
/**
* \brief Allocate a new segment
* \param input The output object
* \param type Type of segment
* \param size Size of segment in bytes
* \return A pointer to the start of the segment.
*
* The returned address doesn't need to correspond to any real memory,
* since it's only used for calculating the relocations.
*/
void *elfloader_allocate_segment(struct elfloader_output *output,
unsigned int type, int size);
/**
* \brief Start writing to a new segment
* \param input The output object
* \param type Type of segment
* \param addr Address of segment from elfloader_allocate_segment
* \param size Size of segment in bytes
* \return Returns ELFLOADER_OK if successful, otherwise an error code
*
*/
int elfloader_start_segment(struct elfloader_output *output,
unsigned int type, void *addr, int size);
/**
* \brief Mark end of segment
* \param input The output object
* \return Zero if successful
*/
int elfloader_end_segment(struct elfloader_output *output);
/**
* \brief Write data to a segment
* \param input The output object
* \param buf Data to be written
* \param len Length of data
* \return The number of bytes actually written, or negative if failed.
*/
int elfloader_write_segment(struct elfloader_output *output, const char *buf,
unsigned int len);
/**
* \brief Get the current offset in the file where the next data will
* be written.
* \param input The output object
* \return The current offset.
*/
unsigned int elfloader_segment_offset(struct elfloader_output *output);
#define elfloader_output_alloc_segment(output, type, size) \
((output)->ops->allocate_segment(output, type, size))
#define elfloader_output_start_segment(output, type, addr, size) \
((output)->ops->start_segment(output, type, addr, size))
#define elfloader_output_end_segment(output) \
((output)->ops->end_segment(output))
#define elfloader_output_write_segment(output, buf, len) \
((output)->ops->write_segment(output, buf, len))
#define elfloader_output_segment_offset(output) \
((output)->ops->segment_offset(output))
struct elfloader_output_ops {
void * (*allocate_segment)(struct elfloader_output *output,
unsigned int type, int size);
int (*start_segment)(struct elfloader_output *output,
unsigned int type, void *addr, int size);
int (*end_segment)(struct elfloader_output *output);
int (*write_segment)(struct elfloader_output *output, const char *buf,
unsigned int len);
unsigned int (*segment_offset)(struct elfloader_output *output);
};
/**
* elfloader initialization function.
*
* This function should be called at boot up to initilize the elfloader.
*/
void elfloader_init(void);
/**
* \brief Load and relocate an ELF file.
* \param input Input object defining how to read from the ELF file
* \param output Output object defining how to create and write to seegments.
* \return ELFLOADER_OK if loading and relocation worked.
* Otherwise an error value.
*
* If the function is able to load the ELF file, a pointer
* to the process structure in the model is stored in the
* elfloader_loaded_process variable.
*
*/
int elfloader_load(int input_fd,
struct elfloader_output *output);
/**
* A pointer to the processes loaded with elfloader_load().
*/
extern struct process **elfloader_autostart_processes;
/**
* If elfloader_load() could not find a specific symbol, it is copied
* into this array.
*/
extern char elfloader_unknown[30];
#ifdef ELFLOADER_CONF_DATAMEMORY_SIZE
#define ELFLOADER_DATAMEMORY_SIZE ELFLOADER_CONF_DATAMEMORY_SIZE
#else
#define ELFLOADER_DATAMEMORY_SIZE 0x100
#endif
#ifdef ELFLOADER_CONF_TEXTMEMORY_SIZE
#define ELFLOADER_TEXTMEMORY_SIZE ELFLOADER_CONF_TEXTMEMORY_SIZE
#else
#define ELFLOADER_TEXTMEMORY_SIZE 0x100
#endif
typedef unsigned long elf32_word;
typedef signed long elf32_sword;
typedef unsigned short elf32_half;
typedef unsigned long elf32_off;
typedef unsigned long elf32_addr;
struct elf32_rela {
elf32_addr r_offset; /* Location to be relocated. */
elf32_word r_info; /* Relocation type and symbol index. */
elf32_sword r_addend; /* Addend. */
};
#endif /* __ELFLOADER_H__ */
/** @} */
/** @} */

View file

@ -0,0 +1,3 @@
#include "symbols.h"
const int symbols_nelts = 0;
const struct symbols symbols[] = {{0,0}};

View file

@ -0,0 +1,139 @@
#ifndef __RAM_SEGMENTS_C__1POIF5E8U4__
#define __RAM_SEGMENTS_C__1POIF5E8U4__
#include <loader/elfloader-otf.h>
#include <loader/codeprop-otf.h>
#include <sys/types.h>
#include <string.h>
#include <stdio.h>
struct ram_output
{
struct elfloader_output output;
char *base;
unsigned int offset;
void *text;
void *rodata;
void *data;
void *bss;
};
static void *
allocate_segment(struct elfloader_output * const output,
unsigned int type, int size)
{
struct ram_output * const ram = (struct ram_output *)output;
void *block = malloc(size);
if (!block) return NULL;
switch(type) {
case ELFLOADER_SEG_TEXT:
if (ram->text) free(ram->text);
ram->text = block;
break;
case ELFLOADER_SEG_RODATA:
if (ram->rodata) free(ram->rodata);
ram->rodata = block;
break;
case ELFLOADER_SEG_DATA:
if (ram->data) free(ram->data);
ram->data = block;
break;
case ELFLOADER_SEG_BSS:
if (ram->bss) free(ram->bss);
ram->bss = block;
break;
default:
free(block);
return NULL;
}
return block;
}
static int
start_segment(struct elfloader_output *output,
unsigned int type, void *addr, int size)
{
((struct ram_output*)output)->base = addr;
((struct ram_output*)output)->offset = 0;
return ELFLOADER_OK;
}
static int
end_segment(struct elfloader_output *output)
{
return ELFLOADER_OK;
}
static int
write_segment(struct elfloader_output *output, const char *buf,
unsigned int len)
{
struct ram_output * const ram = (struct ram_output *)output;
memcpy(ram->base + ram->offset, buf, len);
ram->offset += len;
return len;
}
static unsigned int
segment_offset(struct elfloader_output *output)
{
return ((struct ram_output*)output)->offset;
}
static const struct elfloader_output_ops elf_output_ops =
{
allocate_segment,
start_segment,
end_segment,
write_segment,
segment_offset
};
static struct ram_output seg_output = {
{&elf_output_ops},
NULL,
0,
NULL,
NULL,
NULL,
NULL
};
PROCESS(ram_segments_cleanup_process, "RAM segments cleanup process");
PROCESS_THREAD(ram_segments_cleanup_process, ev, data)
{
PROCESS_BEGIN();
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXITED
|| ev == PROCESS_EVENT_EXIT);
if (ev == PROCESS_EVENT_EXIT) break;
if (elfloader_autostart_processes ||
elfloader_autostart_processes[0] == data) {
PROCESS_PAUSE(); /* Let the process exit */
if (seg_output.text) {
free(seg_output.text);
seg_output.text = NULL;
}
if (seg_output.rodata) {
free(seg_output.rodata);
seg_output.rodata = NULL;
}
if (seg_output.data) {
free(seg_output.data);
seg_output.data = NULL;
}
if (seg_output.bss) {
free(seg_output.bss);
seg_output.bss = NULL;
}
elfloader_autostart_processes = NULL;
}
}
PROCESS_END();
}
struct elfloader_output *codeprop_output = &seg_output.output;
#endif /* __RAM_SEGMENTS_C__1POIF5E8U4__ */

View file

@ -0,0 +1,6 @@
#ifndef __RAM_SEGMENTS_H__8EDB9N09UD__
#define __RAM_SEGMENTS_H__8EDB9N09UD__
PROCESS_NAME(ram_segments_cleanup_process);
#endif /* __RAM_SEGMENTS_H__8EDB9N09UD__ */