jquery, coffeescript added. simple.html for a simple editor, which should look and work like openscad.
This commit is contained in:
parent
c6a95b7de4
commit
6bb529834f
8
coffee-script.js
Normal file
8
coffee-script.js
Normal file
File diff suppressed because one or more lines are too long
4
jquery-1.7.1.min.js
vendored
Normal file
4
jquery-1.7.1.min.js
vendored
Normal file
File diff suppressed because one or more lines are too long
693
simple.html
Normal file
693
simple.html
Normal file
|
@ -0,0 +1,693 @@
|
|||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<script src="lightgl.js"></script>
|
||||
<script src="csg.js"></script>
|
||||
<script src="openjscad.js"></script>
|
||||
<script src="jquery.js"></script>
|
||||
<script src="coffee-script.js"></script>
|
||||
<style>
|
||||
body {
|
||||
font: 14px/20px 'Helvetica Neue Light', HelveticaNeue-Light, 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
||||
}
|
||||
pre, code, textarea {
|
||||
font: 12px/20px Monaco, monospace;
|
||||
border: 1px solid #CCC;
|
||||
border-radius: 3px;
|
||||
background: #F9F9F9;
|
||||
padding: 0 3px;
|
||||
color: #555;
|
||||
}
|
||||
pre, textarea {
|
||||
padding: 10px;
|
||||
}
|
||||
pre {
|
||||
width: 100%;
|
||||
}
|
||||
textarea:focus {
|
||||
outline: none;
|
||||
}
|
||||
canvas {
|
||||
cursor: move;
|
||||
}
|
||||
header > *{
|
||||
display: inline-block;
|
||||
}
|
||||
</style>
|
||||
<link rel="stylesheet" href="openjscad.css" type="text/css">
|
||||
<script>
|
||||
|
||||
var gProcessor=null;
|
||||
|
||||
// Show all exceptions to the user:
|
||||
OpenJsCad.AlertUserOfUncaughtExceptions();
|
||||
|
||||
function onload() {
|
||||
gProcessor = new OpenJsCad.Processor(document.getElementById("viewer"));
|
||||
updateSolid();
|
||||
}
|
||||
|
||||
function getCode() {
|
||||
var code = document.getElementById('code').value;
|
||||
var lang = document.getElementById('lang').value;
|
||||
if( 'CoffeeScript' === lang)
|
||||
code = CoffeeScript.compile( code, { bare: 'on'});
|
||||
return code;
|
||||
}
|
||||
|
||||
function updateSolid() {
|
||||
gProcessor.setJsCad( getCode());
|
||||
}
|
||||
|
||||
/* http://pallieter.org/Projects/insertTab/ */
|
||||
function insertTab(o, e) {
|
||||
var kC = e.keyCode ? e.keyCode : e.charCode ? e.charCode : e.which;
|
||||
if (kC == 9 && !e.shiftKey && !e.ctrlKey && !e.altKey) {
|
||||
var oS = o.scrollTop;
|
||||
if (o.setSelectionRange) {
|
||||
var sS = o.selectionStart;
|
||||
var sE = o.selectionEnd;
|
||||
o.value = o.value.substring(0, sS) + "\t" + o.value.substr(sE);
|
||||
o.setSelectionRange(sS + 1, sS + 1);
|
||||
o.focus();
|
||||
}
|
||||
else if (o.createTextRange) {
|
||||
document.selection.createRange().text = "\t";
|
||||
e.returnValue = false;
|
||||
}
|
||||
o.scrollTop = oS;
|
||||
if (e.preventDefault)
|
||||
e.preventDefault();
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
hist = [];
|
||||
function edit_history(event) {
|
||||
}
|
||||
</script>
|
||||
<title>OpenJsCad</title>
|
||||
</head>
|
||||
|
||||
<body onload="onload()">
|
||||
<header>
|
||||
<h1>OpenJsCad</h1>
|
||||
[<a href='#' onclick="updateSolid(); return false;">Update</a>]
|
||||
</header>
|
||||
|
||||
<div id="viewer" style="float:right;"></div>
|
||||
|
||||
<div id="editor">
|
||||
<textarea id="code" name="code" onkeydown="r=insertTab(this, event);edit_history(event);return r">main = ->
|
||||
resolution = 24; # increase to get smoother corners (will get slow!)
|
||||
|
||||
cube1 = CSG.roundedCube center: [0,0,0], radius: [10,10,10], roundradius: 2, resolution: resolution
|
||||
sphere1 = CSG.sphere center: [5, 5, 5], radius: 10, resolution: resolution
|
||||
sphere2 = sphere1.translate [12, 5, 0]
|
||||
sphere3 = CSG.sphere center: [20, 0, 0], radius: 30, resolution: resolution
|
||||
|
||||
result = cube1
|
||||
result = result.union sphere1
|
||||
result = result.subtract sphere2
|
||||
result = result.intersect sphere3
|
||||
result</textarea>
|
||||
<br>
|
||||
<select id="lang" name="lang">
|
||||
<option>JavaScript</option>
|
||||
<option selected>CoffeeScript</option>
|
||||
</select>
|
||||
</div>
|
||||
|
||||
<div id="help" style="display:none">
|
||||
<h2>Primitive solids</h2>
|
||||
Currently the following solids are supported. The parameters are passed in an object; most
|
||||
parameters are optional. 3D vectors can be passed in an array. If a scalar is passed
|
||||
for a parameter which expects a 3D vector, it is used for the x, y and z value.
|
||||
In other words: <code>radius: 1</code> will give <code>radius: [1,1,1]</code>.
|
||||
<br><br>
|
||||
All rounded solids have a 'resolution' parameter which controls tesselation. If resolution
|
||||
is set to 8, then 8 polygons per 360 degree of revolution are used. Beware that rendering
|
||||
time will increase dramatically when increasing the resolution. For a sphere the number of polygons
|
||||
increases quadratically with the resolution used.
|
||||
<br><br>
|
||||
<pre>
|
||||
// a cube:
|
||||
var cube = CSG.cube({
|
||||
center: [0, 0, 0],
|
||||
radius: [1, 1, 1]
|
||||
});
|
||||
|
||||
// a sphere:
|
||||
var sphere = CSG.sphere({
|
||||
center: [0, 0, 0],
|
||||
radius: 2, // must be scalar
|
||||
resolution: 32
|
||||
});
|
||||
|
||||
// a cylinder:
|
||||
var cylinder = CSG.cylinder({
|
||||
start: [0, -1, 0],
|
||||
end: [0, 1, 0],
|
||||
radius: 1,
|
||||
resolution: 16
|
||||
});
|
||||
|
||||
// like a cylinder, but with spherical endpoints:
|
||||
var roundedCylinder = CSG.roundedCylinder({
|
||||
start: [0, -1, 0],
|
||||
end: [0, 1, 0],
|
||||
radius: 1,
|
||||
resolution: 16
|
||||
});
|
||||
|
||||
// a rounded cube:
|
||||
var cube = CSG.roundedCube({
|
||||
center: [0, 0, 0],
|
||||
radius: 1,
|
||||
roundradius: 0.2,
|
||||
resolution: 8,
|
||||
});
|
||||
</pre>
|
||||
|
||||
<h2>CSG operations</h2>
|
||||
The 3 standard CSG operations are supported. All CSG operations return a new solid; the source solids
|
||||
are not modified:
|
||||
<pre>
|
||||
var csg1 = cube.union(sphere);
|
||||
var csg2 = cube.intersect(sphere);
|
||||
var csg3 = cube.subtract(sphere);
|
||||
</pre>
|
||||
|
||||
<h2>Transformations</h2>
|
||||
Solids can be translated, scaled and rotated. Multiple transforms can be combined into a single matrix transform.
|
||||
For <a href="#math">matrix and vector math see below</a>.
|
||||
<pre>
|
||||
var cube = CSG.cube();
|
||||
|
||||
// translation:
|
||||
var cube2 = cube.translate([1, 2, 3]);
|
||||
|
||||
// scaling:
|
||||
var largecube = cube.scale(2.0);
|
||||
var stretchedcube = cube.scale([1.5, 1, 0.5]);
|
||||
|
||||
// rotation:
|
||||
var rotated1 = cube.rotateX(-45); // rotate around the X axis
|
||||
var rotated2 = cube.rotateY(90); // rotate around the Y axis
|
||||
var rotated3 = cube.rotateZ(20); // rotate around the Z axis
|
||||
|
||||
// combine multiple transforms into a single matrix transform:
|
||||
var m = new CSG.Matrix4x4();
|
||||
m = m.multiply(CSG.Matrix4x4.rotationX(40));
|
||||
m = m.multiply(CSG.Matrix4x4.rotationZ(40));
|
||||
m = m.multiply(CSG.Matrix4x4.translation([-.5, 0, 0]));
|
||||
m = m.multiply(CSG.Matrix4x4.scaling([1.1, 1.2, 1.3]));
|
||||
|
||||
// and apply the transform:
|
||||
var cube3 = cube.transform(m);
|
||||
</pre>
|
||||
|
||||
<h2>Mirroring</h2>
|
||||
Solids can be mirrored in any plane in 3D space. For <a href="#math">plane math see below</a>.
|
||||
<pre>
|
||||
var cube = CSG.cube().translate([1,0,0]);
|
||||
|
||||
var cube2 = cube.mirroredX(); // mirrored in the x=0 plane
|
||||
var cube3 = cube.mirroredY(); // mirrored in the y=0 plane
|
||||
var cube4 = cube.mirroredZ(); // mirrored in the z=0 plane
|
||||
|
||||
// create a plane by specifying 3 points:
|
||||
var plane = CSG.Plane.fromPoints([5,0,0], [5, 1, 0], [3, 1, 7]);
|
||||
|
||||
// and mirror in that plane:
|
||||
var cube5 = cube.mirrored(plane);
|
||||
</pre>
|
||||
|
||||
<h2>Cutting by a plane</h2>
|
||||
A solid can be cut by a plane; only the part on the back side is kept:
|
||||
|
||||
<pre>
|
||||
var cube = CSG.cube({radius: 10});
|
||||
|
||||
// create a plane by specifying 3 points:
|
||||
var plane1 = CSG.Plane.fromPoints([5,0,0], [7, 1, 0], [3, 1, 7]);
|
||||
|
||||
// or by specifying a normal and a point on the plane:
|
||||
var plane2 = CSG.Plane.fromNormalAndPoint([3, 1, 2], [5, 0, 0]);
|
||||
|
||||
// and cut by the plane:
|
||||
var part1 = cube.cutByPlane(plane2);
|
||||
|
||||
// or if we need the other half of the cube:
|
||||
var part2 = cube.cutByPlane(plane2.flipped());
|
||||
</pre>
|
||||
|
||||
|
||||
<h2>Expansion and contraction</h2>
|
||||
Expansion can be seen
|
||||
as the 3D convolution of an object with a sphere. Contraction is the reverse: the area outside the solid
|
||||
is expanded, and this is then subtracted from the solid.
|
||||
<br><br>
|
||||
Expansion and contraction are very powerful ways to get an object with nice smooth corners. For example
|
||||
a rounded cube can be created by expanding a normal cube.
|
||||
<br><br>
|
||||
Note that these are expensive operations: spheroids are created around every corner and edge in the original
|
||||
object, so the number of polygons quickly increases. Expansion and contraction therefore are only practical for simple
|
||||
non-curved objects.
|
||||
<br><br>
|
||||
expand() and contract() take two parameters: the first is the radius of expansion or contraction; the second
|
||||
parameter is optional and specififies the resolution (number of polygons on spherical surfaces, per 360 degree revolution).
|
||||
<pre>
|
||||
var cube1 = CSG.cube({radius: 1.0});
|
||||
var cube2 = CSG.cube({radius: 1.0}).translate([-0.3, -0.3, -0.3]);
|
||||
var csg = cube1.subtract(cube2);
|
||||
var rounded = csg.expand(0.2, 8);
|
||||
</pre>
|
||||
|
||||
<h2>Using Properties</h2>
|
||||
The 'property' property of a solid can be used to store metadata for the object,
|
||||
for example the coordinate of a specific point of interest of the solid. Whenever
|
||||
the object is transformed (i.e. rotated, scaled or translated), the properties
|
||||
are transformed with it. So the property will keep pointing to the same point
|
||||
of interest even after several transformations have been applied to the solid.
|
||||
<br><br>
|
||||
Properties can have any type, but only the properties of classes supporting
|
||||
a 'transform' method will actually be transformed. This includes CSG.Vector3D,
|
||||
CSG.Plane and CSG.Connector. In particular CSG.Connector properties (see below)
|
||||
can be very useful: these can
|
||||
be used to attach a solid to another solid at a predetermined location regardless of the
|
||||
current orientation.
|
||||
<br><br>
|
||||
It's even possible to include a CSG solid as a property of another solid. This could
|
||||
be used for example
|
||||
to define the cutout cylinders to create matching screw holes for an object. Those 'solid properties'
|
||||
get the same transformations as the owning solid but they will not be visible in the result
|
||||
of CSG operations such as union().
|
||||
<br><br>
|
||||
Other kind of properties (for
|
||||
example, strings) will still be included in the properties of the transformed
|
||||
solid, but the properties will not get any transformation when the owning solid is transformed. <br><br>
|
||||
All primitive solids have some predefined properties, such as the center point
|
||||
of a sphere (TODO: document).
|
||||
<br><br>
|
||||
The solid resulting from CSG operations (union(), subtract(), intersect()) will get
|
||||
the merged properties of both source solids. If identically named properties exist, only
|
||||
one of them will be kept.
|
||||
<pre>
|
||||
var cube = CSG.cube({radius: 1.0});
|
||||
cube.properties.aCorner = new CSG.Vector3D([1, 1, 1]);
|
||||
cube = cube.translate([5, 0, 0]);
|
||||
cube = cube.scale(2);
|
||||
// cube.properties.aCorner will now point to [12, 2, 2],
|
||||
// which is still the same corner point
|
||||
|
||||
// Properties can be stored in arrays; all properties in the array
|
||||
// will be transformed if the solid is transformed:
|
||||
cube.properties.otherCorners = [
|
||||
new CSG.Vector3D([-1, 1, 1]),
|
||||
new CSG.Vector3D([-1, -1, 1])
|
||||
];
|
||||
|
||||
// and we can create sub-property objects; these must be of the
|
||||
// CSG.Properties class. All sub properties will be transformed with
|
||||
// the solid:
|
||||
cube.properties.myProperties = new CSG.Properties();
|
||||
cube.properties.myProperties.someProperty = new CSG.Vector3D([-1, -1, -1]);
|
||||
</pre>
|
||||
For an example see the <a href="servodemo.html">Servo motor</a> demo.
|
||||
|
||||
<h2>Connectors</h2>
|
||||
The CSG.Connector class is intended to facilitate
|
||||
attaching two solids to each other at a predetermined
|
||||
location and orientation.
|
||||
For example suppose we have a CSG solid depicting a servo motor
|
||||
and a solid of a servo arm: by defining a Connector property for each of them, we
|
||||
can easily attach the servo arm to the servo motor at the correct position
|
||||
(i.e. the motor shaft) and orientation (i.e. arm perpendicular to the shaft)
|
||||
even if we don't know their current position and orientation
|
||||
in 3D space.<br><br>
|
||||
In other words Connector give us the freedom to rotate and translate objects at will without the need
|
||||
to keep track of their positions and boundaries. And if a third party library exposes connectors for
|
||||
its solids, the user of the library does not have to know the actual dimensions or
|
||||
shapes, only the names of the connector properties.
|
||||
<br><br>
|
||||
A CSG.Connector consist of 3 properties:<br>
|
||||
<b>point</b>: a CSG.Vector3D defining the connection point in 3D space<br>
|
||||
<b>axis</b>: a CSG.Vector3D defining the direction vector of the connection
|
||||
(in the case of the servo motor example it would point in the direction of the shaft)<br>
|
||||
<b>normal</b>: a CSG.Vector3D direction vector somewhat perpendicular to axis; this
|
||||
defines the "12 o'clock" orientation of the connection.
|
||||
<br><br>
|
||||
When connecting two connectors, the solid is transformed such that the <b>point</b>
|
||||
properties will be identical, the <b>axis</b> properties will have the same direction
|
||||
(or opposite direction if mirror == true), and the <b>normal</b>s match as much as possible.
|
||||
<br><br>
|
||||
Connectors can be connected by means of two methods:<br>
|
||||
A CSG solid's <b>connectTo()</b> function transforms a solid such that two connectors
|
||||
become connected.<br>
|
||||
Alternatively we can use a connector's <b>getTransformationTo()</b> method to obtain
|
||||
a transformation matrix which would connect the connectors. This can be used if we
|
||||
need to apply the same transform to multiple solids.
|
||||
|
||||
<pre>
|
||||
var cube1 = CSG.cube({radius: 10});
|
||||
var cube2 = CSG.cube({radius: 4});
|
||||
|
||||
// define a connector on the center of one face of cube1
|
||||
// The connector's axis points outwards and its normal points
|
||||
// towards the positive z axis:
|
||||
cube1.properties.myConnector = new CSG.Connector([10, 0, 0], [1, 0, 0], [0, 0, 1]);
|
||||
|
||||
// define a similar connector for cube 2:
|
||||
cube2.properties.myConnector = new CSG.Connector([0, -4, 0], [0, -1, 0], [0, 0, 1]);
|
||||
|
||||
// do some random transformations on cube 1:
|
||||
cube1 = cube1.rotateX(30);
|
||||
cube1 = cube1.translate([3.1, 2, 0]);
|
||||
|
||||
// Now attach cube2 to cube 1:
|
||||
cube2 = cube2.connectTo(
|
||||
cube2.properties.myConnector,
|
||||
cube1.properties.myConnector,
|
||||
true, // mirror
|
||||
0 // normalrotation
|
||||
);
|
||||
|
||||
// Or alternatively:
|
||||
var matrix = cube2.properties.myConnector.getTransformationTo(
|
||||
cube1.properties.myConnector,
|
||||
true, // mirror
|
||||
0 // normalrotation
|
||||
);
|
||||
cube2 = cube2.transform(matrix);
|
||||
|
||||
var result = cube2.union(cube1);
|
||||
|
||||
</pre>
|
||||
For a more complete example see the <a href="servodemo.html">Servo motor</a> demo.
|
||||
|
||||
<h2>Determining the bounds of an object</h2>
|
||||
The getBounds() function can be used to retrieve the bounding box of an object.
|
||||
getBounds() returns
|
||||
an array with two elements specifying the minimum x,y,z coordinate and the maximum x,y,z coordinate:
|
||||
|
||||
<pre>
|
||||
var cube1 = CSG.cube({radius: 10});
|
||||
var cube2 = CSG.cube({radius: 5});
|
||||
|
||||
// get the right bound of cube1 and the left bound of cube2:
|
||||
var deltax = cube1.getBounds()[1].x - cube2.getBounds()[0].x;
|
||||
|
||||
// align cube2 so it touches cube1:
|
||||
cube2 = cube2.translate([deltax, 0, 0]);
|
||||
|
||||
return cube1.union(cube2);
|
||||
</pre>
|
||||
|
||||
<h2>2D shapes</h2>
|
||||
Two dimensional shapes can be defined through the Polygon2D class. Currently this requires the polygon to be convex
|
||||
(i.e. all corners less than 180 degrees). Shapes can be transformed (rotation, translation, scaling).
|
||||
To actually use the shape it needs to be extruded into a 3D CSG object through the extrude() function. extrude()
|
||||
places the 2D solid onto the z=0 plane, and extrudes in the specified direction. Extrusion can be done with an optional
|
||||
twist. This rotates the solid around the z axis (and not necessariy around the extrusion axis) during extrusion.
|
||||
The total degrees of rotation is specified in the twistangle parameter, and twiststeps determine the number of steps
|
||||
between the bottom and top surface.
|
||||
<pre>
|
||||
// Create a shape; argument is an array of 2D coordinates
|
||||
// The shape must be convex, can be specified in clockwise or in counterclockwise direction
|
||||
var shape2d=new CSG.Polygon2D([[0,0], [5,0], [3,5], [0,5]]);
|
||||
|
||||
// Do some transformations:
|
||||
shape2d=shape2d.translate([-2, -2]);
|
||||
shape2d=shape2d.rotate(20);
|
||||
shape2d=shape2d.scale([0.2, 0.2]);
|
||||
|
||||
// And extrude. This creates a CSG solid:
|
||||
var extruded=shape2d.extrude({
|
||||
offset: [0.5, 0, 2], // direction for extrusion
|
||||
twistangle: 180, // top surface is rotated 180 degrees
|
||||
twiststeps: 100 // create 100 slices
|
||||
});
|
||||
</pre>
|
||||
For an example of 2D shapes see the <a href="hookdemo.html">Parametric S hook</a> demo.
|
||||
|
||||
<h2>2D Paths</h2>
|
||||
A path is simply a series of points, connected by lines. A path can be open or closed (an additional line
|
||||
is drawn between the first and last point). 2D paths are supported through the CSG.Path2D class.
|
||||
<br><br>
|
||||
Paths can be contructed either by giving a series of 2D coordinates, or through the CSG.Path2D.arc() function,
|
||||
which creates a circular curved path. Paths can be concatenated, the result is a new path.
|
||||
<br><br>
|
||||
Creating a 3D solid is currently supported by the rectangularExtrude() function. This creates a 3D shape
|
||||
by following the path with a 2D rectangle (upright, perpendicular to the path direction).
|
||||
<pre>
|
||||
var path = new CSG.Path2D([[10,10], [-10,10]], /* closed = */ false);
|
||||
var anotherpath = new CSG.Path2D([[-10,-10]]);
|
||||
path = path.concat(anotherpath);
|
||||
path = path.appendPoint([10,-10]);
|
||||
path = path.close(); // close the path
|
||||
|
||||
// of course we could simply have done:
|
||||
// var path = new CSG.Path2D([[10,10], [-10,10], [-10,-10], [10,-10]], /* closed = */ true);
|
||||
|
||||
// We can make arcs and circles:
|
||||
var curvedpath = CSG.Path2D.arc({
|
||||
center: [0,0,0],
|
||||
radius: 10,
|
||||
startangle: 0,
|
||||
endangle: 180,
|
||||
resolution: 16,
|
||||
});
|
||||
|
||||
// Extrude the path by following it with a rectangle (upright, perpendicular to the path direction)
|
||||
// Returns a CSG solid
|
||||
// width: width of the extrusion, in the z=0 plane
|
||||
// height: height of the extrusion in the z direction
|
||||
// resolution: number of segments per 360 degrees for the curve in a corner
|
||||
// roundEnds: if true, the ends of the polygon will be rounded, otherwise they will be flat
|
||||
var csg = path.rectangularExtrude(3, 4, 16, true);
|
||||
return csg;
|
||||
</pre>
|
||||
|
||||
<h2>Interactive parametric models</h2>
|
||||
It is possible to make certain parameters
|
||||
editable in the browser. This allows users not familiar with JavaScript to create customized STL files.
|
||||
<br><br>
|
||||
To do so, add a function getParameterDefinitions() to your .jscad source. This function should return
|
||||
an array with parameter definitions. Currently 4 parameters types are supported: float, int, text and choice.
|
||||
The user edited values of the parameters will be supplied as an object parameter to the main() function of your .jscad file.
|
||||
<br><br>
|
||||
A float, int or text parameter is created by including the following object in the array returned by getParameterDefinitions():
|
||||
<pre>{
|
||||
name: 'width',
|
||||
type: 'float', // or 'text' or 'int'
|
||||
default: 1.23, // optional, sets the initial value
|
||||
caption: 'Width of the thingy:', // optional, displayed left of the input field
|
||||
// if omitted, the 'name' is displayed (i.e. 'width')
|
||||
}</pre>
|
||||
A 'choice' parameter is created using the following object:
|
||||
<pre>{
|
||||
name: 'shape',
|
||||
type: 'choice',
|
||||
values: ["TRI", "SQU", "CIR"], // these are the values that will be supplied to your script
|
||||
captions: ["Triangle", "Square", "Circle"], // optional, these values are shown in the listbox
|
||||
// if omitted, the items in the 'values' array are used
|
||||
caption: 'Shape:', // optional, displayed left of the input field
|
||||
default: "SQU", // optional, default selected value
|
||||
// if omitted, the first item is selected by default
|
||||
}</pre>
|
||||
To use the values add an argument to your main() function. This argument will be supplied an object
|
||||
with the user edited parameter values:
|
||||
<pre>
|
||||
function main(params)
|
||||
{
|
||||
// custom error checking:
|
||||
if(params.width <= 0) throw new Error("Width should be positive!");
|
||||
|
||||
if(params.shape == "TRI")
|
||||
{
|
||||
// do something
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
|
||||
A complete example. Copy/paste it into the Playground at the top of this page to see how it works:
|
||||
<pre>
|
||||
function getParameterDefinitions() {
|
||||
return [
|
||||
{
|
||||
name: 'width',
|
||||
type: 'float',
|
||||
default: 10,
|
||||
caption: "Width of the cube:",
|
||||
},
|
||||
{
|
||||
name: 'height',
|
||||
type: 'float',
|
||||
default: 14,
|
||||
caption: "Height of the cube:",
|
||||
},
|
||||
{
|
||||
name: 'depth',
|
||||
type: 'float',
|
||||
default: 7,
|
||||
caption: "Depth of the cube:",
|
||||
},
|
||||
{
|
||||
name: 'rounded',
|
||||
type: 'choice',
|
||||
caption: 'Round the corners?',
|
||||
values: [0, 1],
|
||||
captions: ["No thanks", "Yes please"],
|
||||
default: 1,
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
function main(params) {
|
||||
var result;
|
||||
if(params.rounded == 1)
|
||||
{
|
||||
result = CSG.roundedCube({radius: [params.width, params.height, params.depth], roundradius: 2, resolution: 32});
|
||||
}
|
||||
else
|
||||
{
|
||||
result = CSG.cube({radius: [params.width, params.height, params.depth]});
|
||||
}
|
||||
return result;
|
||||
}
|
||||
</pre>
|
||||
Or see the <a href="gearsdemo.html">Gears demo</a> for another example of interactive parameters.
|
||||
|
||||
<h2>Miscellaneous</h2>
|
||||
Solids can be given a color using the setColor(r, g, b) function. Beware: this returns a new solid,
|
||||
the original solid is not modified! Faces of the solid will keep their original color when doing
|
||||
CSG operations (union() etc). Colors values range between 0.0 and 1.0 (not 255).
|
||||
<pre>
|
||||
var cube1 = CSG.cube({radius: 10});
|
||||
cube1 = cube1.setColor(0.5, 0, 0);
|
||||
|
||||
var cube2 = CSG.cube({radius: 10});
|
||||
cube2 = cube2.setColor(0, 0.5, 0);
|
||||
cube2 = cube2.translate([5,1,4]);
|
||||
|
||||
var result = cube1.subtract(cube2);
|
||||
// the resulting solid will have faces with 2 different colors
|
||||
</pre>
|
||||
|
||||
<h2><a name="math"></a>2D and 3D Math</h2>
|
||||
There are utility classes for many 2D and 3D operations. Below is a quick summary, for details
|
||||
view the source of csg.js:
|
||||
<pre>
|
||||
// --------- Vector3D ---------------------
|
||||
var vec1 = new CSG.Vector3D(1,2,3); // 3 arguments
|
||||
var vec2 = new CSG.Vector3D( [1,2,3] ); // 1 array argument
|
||||
var vec3 = new CSG.Vector3D(vec2); // cloning a vector
|
||||
// get the values as: vec1.x, vec.y, vec1.z
|
||||
// vector math. All operations return a new vector, the original is unmodified!
|
||||
// vectors cannot be modified. Instead you should create a new vector.
|
||||
vec.negated()
|
||||
vec.abs()
|
||||
vec.plus(othervector)
|
||||
vec.minus(othervector)
|
||||
vec.times(3.0)
|
||||
vec.dividedBy(-5)
|
||||
vec.dot(othervector)
|
||||
vec.lerp(othervector, t) // linear interpolation (0 <= t <= 1)
|
||||
vec.length()
|
||||
vec.lengthSquared() // == vec.length()^2
|
||||
vec.unit()
|
||||
vec.cross(othervector) // cross product: returns a vector perpendicular to both
|
||||
vec.distanceTo(othervector)
|
||||
vec.distanceToSquared(othervector) // == vec.distanceTo(othervector)^2
|
||||
vec.equals(othervector)
|
||||
vec.multiply4x4(matrix4x4) // right multiply by a 4x4 matrix
|
||||
vec.min(othervector) // returns a new vector with the minimum x,y and z values
|
||||
vec.max(othervector) // returns a new vector with the maximum x,y and z values
|
||||
|
||||
// --------- Vector2D ---------------------
|
||||
var vec1 = new CSG.Vector2D(1,2); // 2 arguments
|
||||
var vec2 = new CSG.Vector2D( [1,2] ); // 1 array argument
|
||||
var vec3 = new CSG.Vector2D(vec2); // cloning a vector
|
||||
// vector math. All operations return a new vector, the original is unmodified!
|
||||
vec.negated()
|
||||
vec.abs()
|
||||
vec.plus(othervector)
|
||||
vec.minus(othervector)
|
||||
vec.times(3.0)
|
||||
vec.dividedBy(-5)
|
||||
vec.dot(othervector)
|
||||
vec.lerp(othervector, t) // linear interpolation (0 <= t <= 1)
|
||||
vec.length()
|
||||
vec.unit()
|
||||
vec.normal() // returns a 90 degree clockwise rotated vector
|
||||
vec.distanceTo(othervector)
|
||||
vec.equals(othervector)
|
||||
vec.multiply4x4(matrix4x4) // right multiply by a 4x4 matrix
|
||||
vec.toVector3D(z) // convert to a vector3D by adding a z coordinate
|
||||
vec.angleDegrees() // returns the angle of the vector: [1,0] = 0 degrees, [0, 1] = 90 degrees, etc
|
||||
vec.angleRadians() // ditto in radians
|
||||
var vec = CSG.Vector2D.fromAngleDegrees(degrees); // returns a vector at the specified angle
|
||||
var vec = CSG.Vector2D.fromAngleRadians(radians); // returns a vector at the specified angle
|
||||
|
||||
// --------- Matrix4x4 ---------------------
|
||||
var m1 = new CSG.Matrix4x4(); // unity matrix
|
||||
var m2 = new CSG.Matrix4x4( [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] );
|
||||
// elements are passed in row order
|
||||
var result = m1.plus(m2);
|
||||
var result = m1.minus(m2);
|
||||
var result = m1.multiply(m2);
|
||||
// matrix vector multiplication (vectors are padded with zeroes to get a 4x1 vector):
|
||||
var vec3d = m1.rightMultiply1x3Vector(vec3d); // matrix * vector
|
||||
var vec3d = m1.leftMultiply1x3Vector(vec3d); // vector * matrix
|
||||
var vec2d = m1.rightMultiply1x2Vector(vec2d); // matrix * vector
|
||||
var vec2d = m1.leftMultiply1x2Vector(vec2d); // vector * matrix
|
||||
// common transformation matrices:
|
||||
var m = CSG.Matrix4x4.rotationX(degrees); // matrix for rotation about X axis
|
||||
var m = CSG.Matrix4x4.rotationY(degrees); // matrix for rotation about Y axis
|
||||
var m = CSG.Matrix4x4.rotationZ(degrees); // matrix for rotation about Z axis
|
||||
var m = CSG.Matrix4x4.rotation(rotationCenter, rotationAxis, degrees); // rotation about arbitrary point and axis
|
||||
var m = CSG.Matrix4x4.translation(vec3d); // translation
|
||||
var m = CSG.Matrix4x4.scaling(vec3d); // scale
|
||||
var m = CSG.Matrix4x4.mirroring(plane); // mirroring in a plane; the argument must be a CSG.Plane
|
||||
// matrix transformations can be concatenated:
|
||||
var transform = CSG.Matrix4x4.rotationX(20).multiply(CSG.Matrix4x4.rotationY(30));
|
||||
// Use a CSG solid's transform() method to apply the transformation to a CSG solid
|
||||
|
||||
// ------------ Plane --------------------------
|
||||
// a 3D plane is represented by a normal vector (should have unit length) and a distance from the origin w
|
||||
// the plane passes through normal.times(w)
|
||||
var plane1 = new CSG.Plane(normal, w);
|
||||
// Or we can construct a plane from 3 points:
|
||||
var plane2 = CSG.Plane.fromPoints(p1, p2, p3);
|
||||
// Or from a normal vector and 1 point:
|
||||
var plane3 = CSG.Plane.fromNormalAndPoint(normal, point);
|
||||
// Flip a plane (front side becomes back side):
|
||||
var plane4 = plane3.flipped();
|
||||
// Apply transformations (rotation, scaling, translation):
|
||||
var transformed = plane3.transformed(matrix4x4); // argument is a CSG.Matrix4x4
|
||||
// Intersection of plane and 3d line:
|
||||
var point = plane3.intersectWithLine(line); // argument is CSG.Line3D, returns a CSG.Vector3D
|
||||
// Intersection of 2 planes:
|
||||
var line = plane3.intersectWithPlane(plane); // argument is another CSG.Plane, returns a CSG.Line3D
|
||||
// Distance to point:
|
||||
var w = signedDistanceToPoint(point); // argument is CSG.Vector3D, returns a float (positive
|
||||
// if in front of plane, negative if in back)
|
||||
|
||||
// ------------ Line3D --------------------------
|
||||
// A line in 3d space is represented by a point and a direction vector.
|
||||
// Direction should be a unit vector. Point can be any point on the line:
|
||||
var line = new CSG.Line3D(point, direction); // argumenst are CSG.Vector3D
|
||||
// or by giving two points:
|
||||
var line = CSG.Line3D.fromPoints(p1, p2); // argumenst are CSG.Vector3D
|
||||
var point = intersectWithPlane(plane); // == plane.intersectWithLine(this)
|
||||
var line2 = line.reverse(); // same line but reverse direction
|
||||
var line2 = line.transform(matrix4x4); // for rotation, scaling, etc
|
||||
var p = line.closestPointOnLine(point); // project point onto the line
|
||||
var d = line.distanceToPoint(point);
|
||||
</pre>
|
||||
|
||||
</div> <!-- help -->
|
||||
</body>
|
||||
</html>
|
Loading…
Reference in a new issue