ruby-net-ldap/lib/net/ber.rb
2006-11-29 18:09:14 +00:00

427 lines
11 KiB
Ruby

# $Id$
#
# NET::BER
# Mixes ASN.1/BER convenience methods into several standard classes.
# Also provides BER parsing functionality.
#
#----------------------------------------------------------------------------
#
# Copyright (C) 2006 by Francis Cianfrocca. All Rights Reserved.
#
# Gmail: garbagecat10
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
#---------------------------------------------------------------------------
#
#
module Net
module BER
class BerError < Exception; end
class BerIdentifiedString < String
attr_accessor :ber_identifier
def initialize args
super args
end
end
class BerIdentifiedArray < Array
attr_accessor :ber_identifier
def initialize
super
end
end
class BerIdentifiedNull
attr_accessor :ber_identifier
end
#--
# This condenses our nicely self-documenting ASN hashes down
# to an array for fast lookups.
# Scoped to be called as a module method, but not intended for
# user code to call.
#
def self.compile_syntax syn
out = [nil] * 256
syn.each {|tclass,tclasses|
tagclass = {:universal=>0, :application=>64, :context_specific=>128, :private=>192} [tclass]
tclasses.each {|codingtype,codings|
encoding = {:primitive=>0, :constructed=>32} [codingtype]
codings.each {|tag,objtype|
out[tagclass + encoding + tag] = objtype
}
}
}
out
end
# This module is for mixing into IO and IO-like objects.
module BERParser
# The order of these follows the class-codes in BER.
# Maybe this should have been a hash.
TagClasses = [:universal, :application, :context_specific, :private]
BuiltinSyntax = BER.compile_syntax( {
:universal => {
:primitive => {
1 => :boolean,
2 => :integer,
4 => :string,
10 => :integer,
13 => :string # (OID)
},
:constructed => {
16 => :array,
17 => :array
}
}
})
#
# read_ber
# TODO: clean this up so it works properly with partial
# packets coming from streams that don't block when
# we ask for more data (like StringIOs). At it is,
# this can throw TypeErrors and other nasties.
#--
# BEWARE, this violates DRY and is largely equal in functionality to
# read_ber_from_string. Eventually that method may subsume the functionality
# of this one.
#
def read_ber syntax=nil
# don't bother with this line, since IO#getc by definition returns nil on eof.
#return nil if eof?
id = getc or return nil # don't trash this value, we'll use it later
#tag = id & 31
#tag < 31 or raise BerError.new( "unsupported tag encoding: #{id}" )
#tagclass = TagClasses[ id >> 6 ]
#encoding = (id & 0x20 != 0) ? :constructed : :primitive
n = getc
lengthlength,contentlength = if n <= 127
[1,n]
else
# Replaced the inject because it profiles hot.
#j = (0...(n & 127)).inject(0) {|mem,x| mem = (mem << 8) + getc}
j = 0
read( n & 127 ).each_byte {|n1| j = (j << 8) + n1}
[1 + (n & 127), j]
end
newobj = read contentlength
# This exceptionally clever and clear bit of code is verrrry slow.
objtype = (syntax && syntax[id]) || BuiltinSyntax[id]
# == is expensive so sort this if/else so the common cases are at the top.
obj = if objtype == :string
#(newobj || "").dup
s = BerIdentifiedString.new( newobj || "" )
s.ber_identifier = id
s
elsif objtype == :integer
j = 0
newobj.each_byte {|b| j = (j << 8) + b}
j
elsif objtype == :array
#seq = []
seq = BerIdentifiedArray.new
seq.ber_identifier = id
sio = StringIO.new( newobj || "" )
# Interpret the subobject, but note how the loop
# is built: nil ends the loop, but false (a valid
# BER value) does not!
while (e = sio.read_ber(syntax)) != nil
seq << e
end
seq
elsif objtype == :boolean
newobj != "\000"
elsif objtype == :null
n = BerIdentifiedNull.new
n.ber_identifier = id
n
else
#raise BerError.new( "unsupported object type: class=#{tagclass}, encoding=#{encoding}, tag=#{tag}" )
raise BerError.new( "unsupported object type: id=#{id}" )
end
# Add the identifier bits into the object if it's a String or an Array.
# We can't add extra stuff to Fixnums and booleans, not that it makes much sense anyway.
# Replaced this mechanism with subclasses because the instance_eval profiled too hot.
#obj and ([String,Array].include? obj.class) and obj.instance_eval "def ber_identifier; #{id}; end"
#obj.ber_identifier = id if obj.respond_to?(:ber_identifier)
obj
end
#--
# Violates DRY! This replicates the functionality of #read_ber.
# Eventually this method may replace that one.
# This version of #read_ber behaves properly in the face of incomplete
# data packets. If a full BER object is detected, we return an array containing
# the detected object and the number of bytes consumed from the string.
# If we don't detect a complete packet, return nil.
#
# Observe that weirdly we recursively call the original #read_ber in here.
# That needs to be fixed if we ever obsolete the original method in favor of this one.
def read_ber_from_string str, syntax=nil
id = str[0] or return nil
n = str[1] or return nil
n_consumed = 2
lengthlength,contentlength = if n <= 127
[1,n]
else
n1 = n & 127
return nil unless str.length >= (n_consumed + n1)
j = 0
n1.times {
j = (j << 8) + str[n_consumed]
n_consumed += 1
}
[1 + (n1), j]
end
return nil unless str.length >= (n_consumed + contentlength)
newobj = str[n_consumed...(n_consumed + contentlength)]
n_consumed += contentlength
objtype = (syntax && syntax[id]) || BuiltinSyntax[id]
# == is expensive so sort this if/else so the common cases are at the top.
obj = if objtype == :array
seq = BerIdentifiedArray.new
seq.ber_identifier = id
sio = StringIO.new( newobj || "" )
# Interpret the subobject, but note how the loop
# is built: nil ends the loop, but false (a valid
# BER value) does not!
# Also, we can use the standard read_ber method because
# we know for sure we have enough data. (Although this
# might be faster than the standard method.)
while (e = sio.read_ber(syntax)) != nil
seq << e
end
seq
elsif objtype == :string
s = BerIdentifiedString.new( newobj || "" )
s.ber_identifier = id
s
elsif objtype == :integer
j = 0
newobj.each_byte {|b| j = (j << 8) + b}
j
elsif objtype == :boolean
newobj != "\000"
elsif objtype == :null
n = BerIdentifiedNull.new
n.ber_identifier = id
n
else
raise BerError.new( "unsupported object type: id=#{id}" )
end
[obj, n_consumed]
end
end # module BERParser
end # module BER
end # module Net
class IO
include Net::BER::BERParser
end
require "stringio"
class StringIO
include Net::BER::BERParser
end
begin
require 'openssl'
class OpenSSL::SSL::SSLSocket
include Net::BER::BERParser
end
rescue LoadError
# Ignore LoadError.
# DON'T ignore NameError, which means the SSLSocket class
# is somehow unavailable on this implementation of Ruby's openssl.
# This may be WRONG, however, because we don't yet know how Ruby's
# openssl behaves on machines with no OpenSSL library. I suppose
# it's possible they do not fail to require 'openssl' but do not
# create the classes. So this code is provisional.
# Also, you might think that OpenSSL::SSL::SSLSocket inherits from
# IO so we'd pick it up above. But you'd be wrong.
end
class String
include Net::BER::BERParser
def read_ber syntax=nil
StringIO.new(self).read_ber(syntax)
end
def read_ber! syntax=nil
obj,n_consumed = read_ber_from_string(self, syntax)
if n_consumed
self.slice!(0...n_consumed)
obj
else
nil
end
end
end
#----------------------------------------------
class FalseClass
#
# to_ber
#
def to_ber
"\001\001\000"
end
end
class TrueClass
#
# to_ber
#
def to_ber
"\001\001\001"
end
end
class Fixnum
#
# to_ber
#
def to_ber
i = [self].pack('w')
[2, i.length].pack("CC") + i
end
#
# to_ber_enumerated
#
def to_ber_enumerated
i = [self].pack('w')
[10, i.length].pack("CC") + i
end
#
# to_ber_length_encoding
#
def to_ber_length_encoding
if self <= 127
[self].pack('C')
else
i = [self].pack('N').sub(/^[\0]+/,"")
[0x80 + i.length].pack('C') + i
end
end
end # class Fixnum
class Bignum
def to_ber
i = [self].pack('w')
i.length > 126 and raise Net::BER::BerError.new( "range error in bignum" )
[2, i.length].pack("CC") + i
end
end
class String
#
# to_ber
# A universal octet-string is tag number 4,
# but others are possible depending on the context, so we
# let the caller give us one.
# The preferred way to do this in user code is via to_ber_application_sring
# and to_ber_contextspecific.
#
def to_ber code = 4
[code].pack('C') + length.to_ber_length_encoding + self
end
#
# to_ber_application_string
#
def to_ber_application_string code
to_ber( 0x40 + code )
end
#
# to_ber_contextspecific
#
def to_ber_contextspecific code
to_ber( 0x80 + code )
end
end # class String
class Array
#
# to_ber_appsequence
# An application-specific sequence usually gets assigned
# a tag that is meaningful to the particular protocol being used.
# This is different from the universal sequence, which usually
# gets a tag value of 16.
# Now here's an interesting thing: We're adding the X.690
# "application constructed" code at the top of the tag byte (0x60),
# but some clients, notably ldapsearch, send "context-specific
# constructed" (0xA0). The latter would appear to violate RFC-1777,
# but what do I know? We may need to change this.
#
def to_ber id = 0; to_ber_seq_internal( 0x30 + id ); end
def to_ber_set id = 0; to_ber_seq_internal( 0x31 + id ); end
def to_ber_sequence id = 0; to_ber_seq_internal( 0x30 + id ); end
def to_ber_appsequence id = 0; to_ber_seq_internal( 0x60 + id ); end
def to_ber_contextspecific id = 0; to_ber_seq_internal( 0xA0 + id ); end
private
def to_ber_seq_internal code
s = self.to_s
[code].pack('C') + s.length.to_ber_length_encoding + s
end
end # class Array