# $Id$ # # NET::BER # Mixes ASN.1/BER convenience methods into several standard classes. # Also provides BER parsing functionality. # #---------------------------------------------------------------------------- # # Copyright (C) 2006 by Francis Cianfrocca. All Rights Reserved. # # Gmail: garbagecat10 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # #--------------------------------------------------------------------------- # # module Net module BER class BerError < Exception; end class BerIdentifiedString < String attr_accessor :ber_identifier def initialize args super args end end class BerIdentifiedArray < Array attr_accessor :ber_identifier def initialize super end end class BerIdentifiedNull attr_accessor :ber_identifier end #-- # This condenses our nicely self-documenting ASN hashes down # to an array for fast lookups. # Scoped to be called as a module method, but not intended for # user code to call. # def self.compile_syntax syn out = [nil] * 256 syn.each {|tclass,tclasses| tagclass = {:universal=>0, :application=>64, :context_specific=>128, :private=>192} [tclass] tclasses.each {|codingtype,codings| encoding = {:primitive=>0, :constructed=>32} [codingtype] codings.each {|tag,objtype| out[tagclass + encoding + tag] = objtype } } } out end # This module is for mixing into IO and IO-like objects. module BERParser # The order of these follows the class-codes in BER. # Maybe this should have been a hash. TagClasses = [:universal, :application, :context_specific, :private] BuiltinSyntax = BER.compile_syntax( { :universal => { :primitive => { 1 => :boolean, 2 => :integer, 4 => :string, 10 => :integer, }, :constructed => { 16 => :array, 17 => :array } } }) # # read_ber # TODO: clean this up so it works properly with partial # packets coming from streams that don't block when # we ask for more data (like StringIOs). At it is, # this can throw TypeErrors and other nasties. #-- # BEWARE, this violates DRY and is largely equal in functionality to # read_ber_from_string. Eventually that method may subsume the functionality # of this one. # def read_ber syntax=nil # don't bother with this line, since IO#getc by definition returns nil on eof. #return nil if eof? id = getc or return nil # don't trash this value, we'll use it later #tag = id & 31 #tag < 31 or raise BerError.new( "unsupported tag encoding: #{id}" ) #tagclass = TagClasses[ id >> 6 ] #encoding = (id & 0x20 != 0) ? :constructed : :primitive n = getc lengthlength,contentlength = if n <= 127 [1,n] else # Replaced the inject because it profiles hot. #j = (0...(n & 127)).inject(0) {|mem,x| mem = (mem << 8) + getc} j = 0 read( n & 127 ).each_byte {|n1| j = (j << 8) + n1} [1 + (n & 127), j] end newobj = read contentlength # This exceptionally clever and clear bit of code is verrrry slow. objtype = (syntax && syntax[id]) || BuiltinSyntax[id] # == is expensive so sort this if/else so the common cases are at the top. obj = if objtype == :string #(newobj || "").dup s = BerIdentifiedString.new( newobj || "" ) s.ber_identifier = id s elsif objtype == :integer j = 0 newobj.each_byte {|b| j = (j << 8) + b} j elsif objtype == :array #seq = [] seq = BerIdentifiedArray.new seq.ber_identifier = id sio = StringIO.new( newobj || "" ) # Interpret the subobject, but note how the loop # is built: nil ends the loop, but false (a valid # BER value) does not! while (e = sio.read_ber(syntax)) != nil seq << e end seq elsif objtype == :boolean newobj != "\000" elsif objtype == :null n = BerIdentifiedNull.new n.ber_identifier = id n else #raise BerError.new( "unsupported object type: class=#{tagclass}, encoding=#{encoding}, tag=#{tag}" ) raise BerError.new( "unsupported object type: id=#{id}" ) end # Add the identifier bits into the object if it's a String or an Array. # We can't add extra stuff to Fixnums and booleans, not that it makes much sense anyway. # Replaced this mechanism with subclasses because the instance_eval profiled too hot. #obj and ([String,Array].include? obj.class) and obj.instance_eval "def ber_identifier; #{id}; end" #obj.ber_identifier = id if obj.respond_to?(:ber_identifier) obj end #-- # Violates DRY! This replicates the functionality of #read_ber. # Eventually this method may replace that one. # This version of #read_ber behaves properly in the face of incomplete # data packets. If a full BER object is detected, we return an array containing # the detected object and the number of bytes consumed from the string. # If we don't detect a complete packet, return nil. # # Observe that weirdly we recursively call the original #read_ber in here. # That needs to be fixed if we ever obsolete the original method in favor of this one. def read_ber_from_string str, syntax=nil id = str[0] or return nil n = str[1] or return nil n_consumed = 2 lengthlength,contentlength = if n <= 127 [1,n] else n1 = n & 127 return nil unless str.length >= (n_consumed + n1) j = 0 n1.times { j = (j << 8) + str[n_consumed] n_consumed += 1 } [1 + (n1), j] end return nil unless str.length >= (n_consumed + contentlength) newobj = str[n_consumed...(n_consumed + contentlength)] n_consumed += contentlength objtype = (syntax && syntax[id]) || BuiltinSyntax[id] # == is expensive so sort this if/else so the common cases are at the top. obj = if objtype == :array seq = BerIdentifiedArray.new seq.ber_identifier = id sio = StringIO.new( newobj || "" ) # Interpret the subobject, but note how the loop # is built: nil ends the loop, but false (a valid # BER value) does not! # Also, we can use the standard read_ber method because # we know for sure we have enough data. (Although this # might be faster than the standard method.) while (e = sio.read_ber(syntax)) != nil seq << e end seq elsif objtype == :string s = BerIdentifiedString.new( newobj || "" ) s.ber_identifier = id s elsif objtype == :integer j = 0 newobj.each_byte {|b| j = (j << 8) + b} j elsif objtype == :boolean newobj != "\000" elsif objtype == :null n = BerIdentifiedNull.new n.ber_identifier = id n else raise BerError.new( "unsupported object type: id=#{id}" ) end [obj, n_consumed] end end # module BERParser end # module BER end # module Net class IO include Net::BER::BERParser end require "stringio" class StringIO include Net::BER::BERParser end begin require 'openssl' class OpenSSL::SSL::SSLSocket include Net::BER::BERParser end rescue LoadError # Ignore LoadError. # DON'T ignore NameError, which means the SSLSocket class # is somehow unavailable on this implementation of Ruby's openssl. # This may be WRONG, however, because we don't yet know how Ruby's # openssl behaves on machines with no OpenSSL library. I suppose # it's possible they do not fail to require 'openssl' but do not # create the classes. So this code is provisional. # Also, you might think that OpenSSL::SSL::SSLSocket inherits from # IO so we'd pick it up above. But you'd be wrong. end class String include Net::BER::BERParser def read_ber syntax=nil StringIO.new(self).read_ber(syntax) end def read_ber! syntax=nil obj,n_consumed = read_ber_from_string(self, syntax) if n_consumed self.slice!(0...n_consumed) obj else nil end end end #---------------------------------------------- class FalseClass # # to_ber # def to_ber "\001\001\000" end end class TrueClass # # to_ber # def to_ber "\001\001\001" end end class Fixnum # # to_ber # def to_ber i = [self].pack('w') [2, i.length].pack("CC") + i end # # to_ber_enumerated # def to_ber_enumerated i = [self].pack('w') [10, i.length].pack("CC") + i end # # to_ber_length_encoding # def to_ber_length_encoding if self <= 127 [self].pack('C') else i = [self].pack('N').sub(/^[\0]+/,"") [0x80 + i.length].pack('C') + i end end end # class Fixnum class Bignum def to_ber i = [self].pack('w') i.length > 126 and raise Net::BER::BerError.new( "range error in bignum" ) [2, i.length].pack("CC") + i end end class String # # to_ber # A universal octet-string is tag number 4, # but others are possible depending on the context, so we # let the caller give us one. # The preferred way to do this in user code is via to_ber_application_sring # and to_ber_contextspecific. # def to_ber code = 4 [code].pack('C') + length.to_ber_length_encoding + self end # # to_ber_application_string # def to_ber_application_string code to_ber( 0x40 + code ) end # # to_ber_contextspecific # def to_ber_contextspecific code to_ber( 0x80 + code ) end end # class String class Array # # to_ber_appsequence # An application-specific sequence usually gets assigned # a tag that is meaningful to the particular protocol being used. # This is different from the universal sequence, which usually # gets a tag value of 16. # Now here's an interesting thing: We're adding the X.690 # "application constructed" code at the top of the tag byte (0x60), # but some clients, notably ldapsearch, send "context-specific # constructed" (0xA0). The latter would appear to violate RFC-1777, # but what do I know? We may need to change this. # def to_ber id = 0; to_ber_seq_internal( 0x30 + id ); end def to_ber_set id = 0; to_ber_seq_internal( 0x31 + id ); end def to_ber_sequence id = 0; to_ber_seq_internal( 0x30 + id ); end def to_ber_appsequence id = 0; to_ber_seq_internal( 0x60 + id ); end def to_ber_contextspecific id = 0; to_ber_seq_internal( 0xA0 + id ); end private def to_ber_seq_internal code s = self.to_s [code].pack('C') + s.length.to_ber_length_encoding + s end end # class Array