256 lines
7 KiB
C
256 lines
7 KiB
C
|
|
#include "sys/clock.h"
|
|
#include "dev/clock-avr.h"
|
|
#include "sys/etimer.h"
|
|
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
static volatile clock_time_t count;
|
|
static volatile uint8_t scount;
|
|
volatile unsigned long seconds;
|
|
long sleepseconds;
|
|
|
|
/* Set RADIOSTATS to monitor radio on time (must also be set in the radio driver) */
|
|
#if RF230BB && AVR_WEBSERVER
|
|
#define RADIOSTATS 1
|
|
#endif
|
|
|
|
#if RADIOSTATS
|
|
static volatile uint8_t rcount;
|
|
volatile unsigned long radioontime;
|
|
extern uint8_t RF230_receive_on;
|
|
#endif
|
|
|
|
/* Set RADIOCALIBRATE for periodic calibration of the PLL during extended radio on time.
|
|
* The data sheet suggests every 5 minutes if the temperature is fluctuating.
|
|
* Using an eight bit counter gives 256 second calibrations.
|
|
* Actual calibration is done by the driver on the next transmit request.
|
|
*/
|
|
#if RADIOCALIBRATE
|
|
extern volatile uint8_t rf230_calibrate;
|
|
static uint8_t calibrate_interval;
|
|
#endif
|
|
|
|
/*
|
|
CLOCK_SECOND is the number of ticks per second.
|
|
It is defined through CONF_CLOCK_SECOND in the contiki-conf.h for each platform.
|
|
The usual AVR default is ~125 ticks per second, counting a prescaler the CPU clock
|
|
using the 8 bit timer0.
|
|
|
|
As clock_time_t is an unsigned 16 bit data type, intervals up to 524 seconds
|
|
can be measured with 8 millisecond precision.
|
|
For longer intervals a 32 bit global is incremented every second.
|
|
|
|
clock-avr.h contains the specific setup code for each mcu.
|
|
|
|
*/
|
|
/*---------------------------------------------------------------------------*/
|
|
/* This routine can be called to add seconds to the clock after a sleep
|
|
* of an integral number of seconds.
|
|
*/
|
|
void clock_adjust_seconds(uint8_t howmany) {
|
|
seconds += howmany;
|
|
sleepseconds +=howmany;
|
|
#if RADIOSTATS
|
|
if (RF230_receive_on) radioontime += howmany;
|
|
#endif
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
//SIGNAL(SIG_OUTPUT_COMPARE0)
|
|
ISR(AVR_OUTPUT_COMPARE_INT)
|
|
{
|
|
count++;
|
|
if(++scount == CLOCK_SECOND) {
|
|
scount = 0;
|
|
seconds++;
|
|
}
|
|
#if RADIOCALIBRATE
|
|
if (++calibrate_interval==0) {
|
|
rf230_calibrate=1;
|
|
}
|
|
#endif
|
|
#if RADIOSTATS
|
|
if (RF230_receive_on) {
|
|
if (++rcount == CLOCK_SECOND) {
|
|
rcount=0;
|
|
radioontime++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 1
|
|
/* gcc will save all registers on the stack if an external routine is called */
|
|
if(etimer_pending()) {
|
|
etimer_request_poll();
|
|
}
|
|
#else
|
|
/* doing this locally saves 9 pushes and 9 pops, but these etimer.c and process.c variables have to lose the static qualifier */
|
|
extern struct etimer *timerlist;
|
|
extern volatile unsigned char poll_requested;
|
|
|
|
#define PROCESS_STATE_NONE 0
|
|
#define PROCESS_STATE_RUNNING 1
|
|
#define PROCESS_STATE_CALLED 2
|
|
|
|
if (timerlist) {
|
|
if(etimer_process.state == PROCESS_STATE_RUNNING ||
|
|
etimer_process.state == PROCESS_STATE_CALLED) {
|
|
etimer_process.needspoll = 1;
|
|
poll_requested = 1;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
clock_init(void)
|
|
{
|
|
cli ();
|
|
OCRSetup();
|
|
//scount = count = 0;
|
|
sei ();
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
clock_time_t
|
|
clock_time(void)
|
|
{
|
|
clock_time_t tmp;
|
|
do {
|
|
tmp = count;
|
|
} while(tmp != count);
|
|
return tmp;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* Delay the CPU for a multiple of TODO
|
|
*/
|
|
void
|
|
clock_delay(unsigned int i)
|
|
{
|
|
for (; i > 0; i--) { /* Needs fixing XXX */
|
|
unsigned j;
|
|
for (j = 50; j > 0; j--)
|
|
asm volatile("nop");
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* Wait for a multiple of 1 / 125 sec = 0.008 ms.
|
|
*
|
|
*/
|
|
void
|
|
clock_wait(int i)
|
|
{
|
|
clock_time_t start;
|
|
|
|
start = clock_time();
|
|
while(clock_time() - start < (clock_time_t)i);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
clock_set_seconds(unsigned long sec)
|
|
{
|
|
// TODO
|
|
}
|
|
|
|
unsigned long
|
|
clock_seconds(void)
|
|
{
|
|
unsigned long tmp;
|
|
do {
|
|
tmp = seconds;
|
|
} while(tmp != seconds);
|
|
return tmp;
|
|
}
|
|
|
|
#ifdef HANG_ON_UNKNOWN_INTERRUPT
|
|
/* Useful for diagnosing unknown interrupts that reset the mcu.
|
|
* Currently set up for 12mega128rfa1.
|
|
* For other mcus, enable all and then disable the conflicts.
|
|
*/
|
|
static volatile uint8_t x;
|
|
ISR( _VECTOR(0)) {while (1) x++;}
|
|
ISR( _VECTOR(1)) {while (1) x++;}
|
|
ISR( _VECTOR(2)) {while (1) x++;}
|
|
ISR( _VECTOR(3)) {while (1) x++;}
|
|
ISR( _VECTOR(4)) {while (1) x++;}
|
|
ISR( _VECTOR(5)) {while (1) x++;}
|
|
ISR( _VECTOR(6)) {while (1) x++;}
|
|
ISR( _VECTOR(7)) {while (1) x++;}
|
|
ISR( _VECTOR(8)) {while (1) x++;}
|
|
ISR( _VECTOR(9)) {while (1) x++;}
|
|
ISR( _VECTOR(10)) {while (1) x++;}
|
|
ISR( _VECTOR(11)) {while (1) x++;}
|
|
ISR( _VECTOR(12)) {while (1) x++;}
|
|
ISR( _VECTOR(13)) {while (1) x++;}
|
|
ISR( _VECTOR(14)) {while (1) x++;}
|
|
ISR( _VECTOR(15)) {while (1) x++;}
|
|
ISR( _VECTOR(16)) {while (1) x++;}
|
|
ISR( _VECTOR(17)) {while (1) x++;}
|
|
ISR( _VECTOR(18)) {while (1) x++;}
|
|
ISR( _VECTOR(19)) {while (1) x++;}
|
|
//ISR( _VECTOR(20)) {while (1) x++;}
|
|
//ISR( _VECTOR(21)) {while (1) x++;}
|
|
ISR( _VECTOR(22)) {while (1) x++;}
|
|
ISR( _VECTOR(23)) {while (1) x++;}
|
|
ISR( _VECTOR(24)) {while (1) x++;}
|
|
//ISR( _VECTOR(25)) {while (1) x++;}
|
|
ISR( _VECTOR(26)) {while (1) x++;}
|
|
//ISR( _VECTOR(27)) {while (1) x++;}
|
|
ISR( _VECTOR(28)) {while (1) x++;}
|
|
ISR( _VECTOR(29)) {while (1) x++;}
|
|
ISR( _VECTOR(30)) {while (1) x++;}
|
|
ISR( _VECTOR(31)) {while (1) x++;}
|
|
//ISR( _VECTOR(32)) {while (1) x++;}
|
|
ISR( _VECTOR(33)) {while (1) x++;}
|
|
ISR( _VECTOR(34)) {while (1) x++;}
|
|
ISR( _VECTOR(35)) {while (1) x++;}
|
|
//ISR( _VECTOR(36)) {while (1) x++;}
|
|
ISR( _VECTOR(37)) {while (1) x++;}
|
|
//ISR( _VECTOR(38)) {while (1) x++;}
|
|
ISR( _VECTOR(39)) {while (1) x++;}
|
|
ISR( _VECTOR(40)) {while (1) x++;}
|
|
ISR( _VECTOR(41)) {while (1) x++;}
|
|
ISR( _VECTOR(42)) {while (1) x++;}
|
|
ISR( _VECTOR(43)) {while (1) x++;}
|
|
ISR( _VECTOR(44)) {while (1) x++;}
|
|
ISR( _VECTOR(45)) {while (1) x++;}
|
|
ISR( _VECTOR(46)) {while (1) x++;}
|
|
ISR( _VECTOR(47)) {while (1) x++;}
|
|
ISR( _VECTOR(48)) {while (1) x++;}
|
|
ISR( _VECTOR(49)) {while (1) x++;}
|
|
ISR( _VECTOR(50)) {while (1) x++;}
|
|
ISR( _VECTOR(51)) {while (1) x++;}
|
|
ISR( _VECTOR(52)) {while (1) x++;}
|
|
ISR( _VECTOR(53)) {while (1) x++;}
|
|
ISR( _VECTOR(54)) {while (1) x++;}
|
|
ISR( _VECTOR(55)) {while (1) x++;}
|
|
ISR( _VECTOR(56)) {while (1) x++;}
|
|
//ISR( _VECTOR(57)) {while (1) x++;}
|
|
//ISR( _VECTOR(58)) {while (1) x++;}
|
|
//ISR( _VECTOR(59)) {while (1) x++;}
|
|
//ISR( _VECTOR(60)) {while (1) x++;}
|
|
ISR( _VECTOR(61)) {while (1) x++;}
|
|
ISR( _VECTOR(62)) {while (1) x++;}
|
|
ISR( _VECTOR(63)) {while (1) x++;}
|
|
ISR( _VECTOR(64)) {while (1) x++;}
|
|
ISR( _VECTOR(65)) {while (1) x++;}
|
|
ISR( _VECTOR(66)) {while (1) x++;}
|
|
ISR( _VECTOR(67)) {while (1) x++;}
|
|
ISR( _VECTOR(68)) {while (1) x++;}
|
|
ISR( _VECTOR(69)) {while (1) x++;}
|
|
ISR( _VECTOR(70)) {while (1) x++;}
|
|
ISR( _VECTOR(71)) {while (1) x++;}
|
|
ISR( _VECTOR(72)) {while (1) x++;}
|
|
ISR( _VECTOR(73)) {while (1) x++;}
|
|
ISR( _VECTOR(74)) {while (1) x++;}
|
|
ISR( _VECTOR(75)) {while (1) x++;}
|
|
ISR( _VECTOR(76)) {while (1) x++;}
|
|
ISR( _VECTOR(77)) {while (1) x++;}
|
|
ISR( _VECTOR(78)) {while (1) x++;}
|
|
ISR( _VECTOR(79)) {while (1) x++;}
|
|
#endif |