e65dabb119
We can now directly compile arduino sketches (.pde) files. Arduino compatible analogWrite works now. But there is still a long way to go, serial I/O and timer stuff (delay, millis etc) currently don't work (not tested but I don't expect this to work). It can be used in an arduino sketch or in a normal contiki program. We get a PWM frequency of 490.2 Hz (a period of 2.040 ms), that's Arduino compatible. If you need different frequencies see native timer usage in examples/osd/pwm-example In a contiki program you have to call arduino_pwm_timer_init to initialize the timer before pwm works. The arduino sketch wrapper already does this. For running a sketch, see examples/osd/arduino-sketch
246 lines
6.7 KiB
C
246 lines
6.7 KiB
C
/*
|
|
wiring.c - Partial implementation of the Wiring API for the ATmega8.
|
|
Part of Arduino - http://www.arduino.cc/
|
|
|
|
Copyright (c) 2005-2006 David A. Mellis
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General
|
|
Public License along with this library; if not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
Boston, MA 02111-1307 USA
|
|
|
|
$Id$
|
|
*/
|
|
|
|
#include "wiring_private.h"
|
|
#include "hw-arduino.h"
|
|
|
|
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
|
// the overflow handler is called every 256 ticks.
|
|
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
|
|
|
|
// the whole number of milliseconds per timer0 overflow
|
|
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
|
|
|
|
// the fractional number of milliseconds per timer0 overflow. we shift right
|
|
// by three to fit these numbers into a byte. (for the clock speeds we care
|
|
// about - 8 and 16 MHz - this doesn't lose precision.)
|
|
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
|
#define FRACT_MAX (1000 >> 3)
|
|
|
|
volatile unsigned long timer0_overflow_count = 0;
|
|
volatile unsigned long timer0_millis = 0;
|
|
static unsigned char timer0_fract = 0;
|
|
|
|
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
|
|
SIGNAL(TIM0_OVF_vect)
|
|
#else
|
|
SIGNAL(TIMER0_OVF_vect)
|
|
#endif
|
|
{
|
|
// copy these to local variables so they can be stored in registers
|
|
// (volatile variables must be read from memory on every access)
|
|
unsigned long m = timer0_millis;
|
|
unsigned char f = timer0_fract;
|
|
|
|
m += MILLIS_INC;
|
|
f += FRACT_INC;
|
|
if (f >= FRACT_MAX) {
|
|
f -= FRACT_MAX;
|
|
m += 1;
|
|
}
|
|
|
|
timer0_fract = f;
|
|
timer0_millis = m;
|
|
timer0_overflow_count++;
|
|
}
|
|
|
|
unsigned long millis()
|
|
{
|
|
unsigned long m;
|
|
uint8_t oldSREG = SREG;
|
|
|
|
// disable interrupts while we read timer0_millis or we might get an
|
|
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
|
cli();
|
|
m = timer0_millis;
|
|
SREG = oldSREG;
|
|
|
|
return m;
|
|
}
|
|
|
|
unsigned long micros() {
|
|
unsigned long m;
|
|
uint8_t oldSREG = SREG, t;
|
|
|
|
cli();
|
|
m = timer0_overflow_count;
|
|
#if defined(TCNT0)
|
|
t = TCNT0;
|
|
#elif defined(TCNT0L)
|
|
t = TCNT0L;
|
|
#else
|
|
#error TIMER 0 not defined
|
|
#endif
|
|
|
|
|
|
#ifdef TIFR0
|
|
if ((TIFR0 & _BV(TOV0)) && (t < 255))
|
|
m++;
|
|
#else
|
|
if ((TIFR & _BV(TOV0)) && (t < 255))
|
|
m++;
|
|
#endif
|
|
|
|
SREG = oldSREG;
|
|
|
|
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
|
}
|
|
|
|
void delay(unsigned long ms)
|
|
{
|
|
uint16_t start = (uint16_t)micros();
|
|
|
|
while (ms > 0) {
|
|
if (((uint16_t)micros() - start) >= 1000) {
|
|
ms--;
|
|
start += 1000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
|
|
void delayMicroseconds(unsigned int us)
|
|
{
|
|
// calling avrlib's delay_us() function with low values (e.g. 1 or
|
|
// 2 microseconds) gives delays longer than desired.
|
|
//delay_us(us);
|
|
#if F_CPU >= 20000000L
|
|
// for the 20 MHz clock on rare Arduino boards
|
|
|
|
// for a one-microsecond delay, simply wait 2 cycle and return. The overhead
|
|
// of the function call yields a delay of exactly a one microsecond.
|
|
__asm__ __volatile__ (
|
|
"nop" "\n\t"
|
|
"nop"); //just waiting 2 cycle
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes a 1/5 of a microsecond (4 cycles)
|
|
// per iteration, so execute it five times for each microsecond of
|
|
// delay requested.
|
|
us = (us<<2) + us; // x5 us
|
|
|
|
// account for the time taken in the preceeding commands.
|
|
us -= 2;
|
|
|
|
#elif F_CPU >= 16000000L
|
|
// for the 16 MHz clock on most Arduino boards
|
|
|
|
// for a one-microsecond delay, simply return. the overhead
|
|
// of the function call yields a delay of approximately 1 1/8 us.
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes a quarter of a microsecond (4 cycles)
|
|
// per iteration, so execute it four times for each microsecond of
|
|
// delay requested.
|
|
us <<= 2;
|
|
|
|
// account for the time taken in the preceeding commands.
|
|
us -= 2;
|
|
#else
|
|
// for the 8 MHz internal clock on the ATmega168
|
|
|
|
// for a one- or two-microsecond delay, simply return. the overhead of
|
|
// the function calls takes more than two microseconds. can't just
|
|
// subtract two, since us is unsigned; we'd overflow.
|
|
if (--us == 0)
|
|
return;
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes half of a microsecond (4 cycles)
|
|
// per iteration, so execute it twice for each microsecond of
|
|
// delay requested.
|
|
us <<= 1;
|
|
|
|
// partially compensate for the time taken by the preceeding commands.
|
|
// we can't subtract any more than this or we'd overflow w/ small delays.
|
|
us--;
|
|
#endif
|
|
|
|
// busy wait
|
|
__asm__ __volatile__ (
|
|
"1: sbiw %0,1" "\n\t" // 2 cycles
|
|
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
|
);
|
|
}
|
|
|
|
void arduino_init()
|
|
{
|
|
// this needs to be called before setup() or some functions won't
|
|
// work there
|
|
|
|
// on the ATmega168, timer 0 is also used for fast hardware pwm
|
|
// (using phase-correct PWM would mean that timer 0 overflowed half as often
|
|
// resulting in different millis() behavior on the ATmega8 and ATmega168)
|
|
/*
|
|
* RSC: Keep timer0 for now, until we decide how to implement
|
|
* millis() etc in a contiki-compatible way
|
|
*/
|
|
|
|
#if defined(TCCR0A) && defined(WGM01)
|
|
sbi(TCCR0A, WGM01);
|
|
sbi(TCCR0A, WGM00);
|
|
#endif
|
|
// set timer 0 prescale factor to 64
|
|
#if defined(__AVR_ATmega128__)
|
|
// CPU specific: different values for the ATmega128
|
|
sbi(TCCR0, CS02);
|
|
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
|
|
// this combination is for the standard atmega8
|
|
sbi(TCCR0, CS01);
|
|
sbi(TCCR0, CS00);
|
|
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
|
|
// this combination is for the standard 168/328/1280/2560
|
|
sbi(TCCR0B, CS01);
|
|
sbi(TCCR0B, CS00);
|
|
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
|
|
// this combination is for the __AVR_ATmega645__ series
|
|
sbi(TCCR0A, CS01);
|
|
sbi(TCCR0A, CS00);
|
|
#else
|
|
#error Timer 0 prescale factor 64 not set correctly
|
|
#endif
|
|
|
|
// enable timer 0 overflow interrupt
|
|
#if defined(TIMSK) && defined(TOIE0)
|
|
sbi(TIMSK, TOIE0);
|
|
#elif defined(TIMSK0) && defined(TOIE0)
|
|
sbi(TIMSK0, TOIE0);
|
|
#else
|
|
#error Timer 0 overflow interrupt not set correctly
|
|
#endif
|
|
|
|
/*
|
|
* All other PCM timers are initialized here in a
|
|
* platform-specific way
|
|
*/
|
|
arduino_pwm_timer_init ();
|
|
|
|
/*
|
|
* Removed the rest which manipulates the serial pins
|
|
*/
|
|
}
|