osd-contiki/examples/cc26xx/cc26xx-web-demo/cc26xx-web-demo.c
2015-05-17 14:09:51 +01:00

891 lines
28 KiB
C

/*
* Copyright (c) 2014, Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \addtogroup cc26xx-web-demo
* @{
*
* \file
* Main module for the CC26XX web demo. Activates on-device resources,
* takes sensor readings periodically and caches them for all other modules
* to use.
*/
/*---------------------------------------------------------------------------*/
#include "contiki.h"
#include "contiki-net.h"
#include "rest-engine.h"
#include "board-peripherals.h"
#include "lib/sensors.h"
#include "lib/list.h"
#include "sys/process.h"
#include "button-sensor.h"
#include "batmon-sensor.h"
#include "httpd-simple.h"
#include "cc26xx-web-demo.h"
#include "mqtt-client.h"
#include "coap-server.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*---------------------------------------------------------------------------*/
PROCESS_NAME(cetic_6lbr_client_process);
PROCESS(cc26xx_web_demo_process, "CC26XX Web Demo");
/*---------------------------------------------------------------------------*/
/*
* Update sensor readings in a staggered fashion every SENSOR_READING_PERIOD
* ticks + a random interval between 0 and SENSOR_READING_RANDOM ticks
*/
#define SENSOR_READING_PERIOD (CLOCK_SECOND * 20)
#define SENSOR_READING_RANDOM (CLOCK_SECOND << 4)
struct ctimer batmon_timer;
#if BOARD_SENSORTAG
struct ctimer bmp_timer, hdc_timer, tmp_timer, opt_timer, mpu_timer;
#endif
/*---------------------------------------------------------------------------*/
/* Provide visible feedback via LEDS while searching for a network */
#define NO_NET_LED_DURATION (CC26XX_WEB_DEMO_NET_CONNECT_PERIODIC >> 1)
static struct etimer et;
static struct ctimer ct;
/*---------------------------------------------------------------------------*/
process_event_t cc26xx_web_demo_publish_event;
process_event_t cc26xx_web_demo_config_loaded_event;
process_event_t cc26xx_web_demo_load_config_defaults;
/*---------------------------------------------------------------------------*/
/* Saved settings on flash: store, offset, magic */
#define CONFIG_FLASH_OFFSET 0
#define CONFIG_MAGIC 0xCC265001
cc26xx_web_demo_config_t cc26xx_web_demo_config;
/*---------------------------------------------------------------------------*/
/* A cache of sensor values. Updated periodically or upon key press */
LIST(sensor_list);
/*---------------------------------------------------------------------------*/
/* The objects representing sensors used in this demo */
#define DEMO_SENSOR(name, type, descr, xml_element, form_field, units) \
cc26xx_web_demo_sensor_reading_t name##_reading = \
{ NULL, 0, 0, descr, xml_element, form_field, units, type, 1, 1 }
/* CC26xx sensors */
DEMO_SENSOR(batmon_temp, CC26XX_WEB_DEMO_SENSOR_BATMON_TEMP,
"Battery Temp", "battery-temp", "batmon_temp",
CC26XX_WEB_DEMO_UNIT_TEMP);
DEMO_SENSOR(batmon_volt, CC26XX_WEB_DEMO_SENSOR_BATMON_VOLT,
"Battery Volt", "battery-volt", "batmon_volt",
CC26XX_WEB_DEMO_UNIT_VOLT);
/* Sensortag sensors */
#if BOARD_SENSORTAG
DEMO_SENSOR(bmp_pres, CC26XX_WEB_DEMO_SENSOR_BMP_PRES,
"Air Pressure", "air-pressure", "bmp_pres",
CC26XX_WEB_DEMO_UNIT_PRES);
DEMO_SENSOR(bmp_temp, CC26XX_WEB_DEMO_SENSOR_BMP_TEMP,
"Air Temp", "air-temp", "bmp_temp",
CC26XX_WEB_DEMO_UNIT_TEMP);
DEMO_SENSOR(hdc_temp, CC26XX_WEB_DEMO_SENSOR_HDC_TEMP,
"HDC Temp", "hdc-temp", "hdc_temp",
CC26XX_WEB_DEMO_UNIT_TEMP);
DEMO_SENSOR(hdc_hum, CC26XX_WEB_DEMO_SENSOR_HDC_HUMIDITY,
"HDC Humidity", "hdc-humidity", "hdc_hum",
CC26XX_WEB_DEMO_UNIT_HUMIDITY);
DEMO_SENSOR(tmp_amb, CC26XX_WEB_DEMO_SENSOR_TMP_AMBIENT,
"Ambient Temp", "ambient-temp", "tmp_amb",
CC26XX_WEB_DEMO_UNIT_TEMP);
DEMO_SENSOR(tmp_obj, CC26XX_WEB_DEMO_SENSOR_TMP_OBJECT,
"Object Temp", "object-temp", "tmp_obj",
CC26XX_WEB_DEMO_UNIT_TEMP);
DEMO_SENSOR(opt, CC26XX_WEB_DEMO_SENSOR_OPT_LIGHT,
"Light", "light", "light",
CC26XX_WEB_DEMO_UNIT_LIGHT);
/* MPU Readings */
DEMO_SENSOR(mpu_acc_x, CC26XX_WEB_DEMO_SENSOR_MPU_ACC_X,
"Acc X", "acc-x", "acc_x",
CC26XX_WEB_DEMO_UNIT_ACC);
DEMO_SENSOR(mpu_acc_y, CC26XX_WEB_DEMO_SENSOR_MPU_ACC_Y,
"Acc Y", "acc-y", "acc_y",
CC26XX_WEB_DEMO_UNIT_ACC);
DEMO_SENSOR(mpu_acc_z, CC26XX_WEB_DEMO_SENSOR_MPU_ACC_Z,
"Acc Z", "acc-z", "acc_z",
CC26XX_WEB_DEMO_UNIT_ACC);
DEMO_SENSOR(mpu_gyro_x, CC26XX_WEB_DEMO_SENSOR_MPU_GYRO_X,
"Gyro X", "gyro-x", "gyro_x",
CC26XX_WEB_DEMO_UNIT_GYRO);
DEMO_SENSOR(mpu_gyro_y, CC26XX_WEB_DEMO_SENSOR_MPU_GYRO_Y,
"Gyro Y", "gyro-y", "gyro_y",
CC26XX_WEB_DEMO_UNIT_GYRO);
DEMO_SENSOR(mpu_gyro_z, CC26XX_WEB_DEMO_SENSOR_MPU_GYRO_Z,
"Gyro Z", "gyro-z", "gyro_Z",
CC26XX_WEB_DEMO_UNIT_GYRO);
#endif
/*---------------------------------------------------------------------------*/
#if BOARD_SENSORTAG
static void init_bmp_reading(void *data);
static void init_light_reading(void *data);
static void init_hdc_reading(void *data);
static void init_tmp_reading(void *data);
static void init_mpu_reading(void *data);
#endif
/*---------------------------------------------------------------------------*/
static void
publish_led_off(void *d)
{
leds_off(CC26XX_WEB_DEMO_STATUS_LED);
}
/*---------------------------------------------------------------------------*/
static void
save_config()
{
/* Dump current running config to flash */
#if BOARD_SENSORTAG
int rv;
cc26xx_web_demo_sensor_reading_t *reading = NULL;
rv = ext_flash_open();
if(!rv) {
printf("Could not open flash to save config\n");
ext_flash_close();
return;
}
rv = ext_flash_erase(CONFIG_FLASH_OFFSET, sizeof(cc26xx_web_demo_config_t));
if(!rv) {
printf("Error erasing flash\n");
} else {
cc26xx_web_demo_config.magic = CONFIG_MAGIC;
cc26xx_web_demo_config.len = sizeof(cc26xx_web_demo_config_t);
cc26xx_web_demo_config.sensors_bitmap = 0;
for(reading = list_head(sensor_list);
reading != NULL;
reading = list_item_next(reading)) {
if(reading->publish) {
cc26xx_web_demo_config.sensors_bitmap |= (1 << reading->type);
}
}
rv = ext_flash_write(CONFIG_FLASH_OFFSET, sizeof(cc26xx_web_demo_config_t),
(uint8_t *)&cc26xx_web_demo_config);
if(!rv) {
printf("Error saving config\n");
}
}
ext_flash_close();
#endif
}
/*---------------------------------------------------------------------------*/
static void
load_config()
{
#if BOARD_SENSORTAG
/* Read from flash into a temp buffer */
cc26xx_web_demo_config_t tmp_cfg;
cc26xx_web_demo_sensor_reading_t *reading = NULL;
int rv = ext_flash_open();
if(!rv) {
printf("Could not open flash to load config\n");
ext_flash_close();
return;
}
rv = ext_flash_read(CONFIG_FLASH_OFFSET, sizeof(tmp_cfg),
(uint8_t *)&tmp_cfg);
ext_flash_close();
if(!rv) {
printf("Error loading config\n");
return;
}
if(tmp_cfg.magic == CONFIG_MAGIC && tmp_cfg.len == sizeof(tmp_cfg)) {
memcpy(&cc26xx_web_demo_config, &tmp_cfg, sizeof(cc26xx_web_demo_config));
}
for(reading = list_head(sensor_list);
reading != NULL;
reading = list_item_next(reading)) {
if(cc26xx_web_demo_config.sensors_bitmap & (1 << reading->type)) {
reading->publish = 1;
} else {
reading->publish = 0;
snprintf(reading->converted, CC26XX_WEB_DEMO_CONVERTED_LEN, "\"N/A\"");
}
}
#endif
}
/*---------------------------------------------------------------------------*/
/* Don't start everything here, we need to dictate order of initialisation */
AUTOSTART_PROCESSES(&cc26xx_web_demo_process);
/*---------------------------------------------------------------------------*/
int
cc26xx_web_demo_ipaddr_sprintf(char *buf, uint8_t buf_len,
const uip_ipaddr_t *addr)
{
uint16_t a;
uint8_t len = 0;
int i, f;
for(i = 0, f = 0; i < sizeof(uip_ipaddr_t); i += 2) {
a = (addr->u8[i] << 8) + addr->u8[i + 1];
if(a == 0 && f >= 0) {
if(f++ == 0) {
len += snprintf(&buf[len], buf_len - len, "::");
}
} else {
if(f > 0) {
f = -1;
} else if(i > 0) {
len += snprintf(&buf[len], buf_len - len, ":");
}
len += snprintf(&buf[len], buf_len - len, "%x", a);
}
}
return len;
}
/*---------------------------------------------------------------------------*/
const cc26xx_web_demo_sensor_reading_t *
cc26xx_web_demo_sensor_lookup(int sens_type)
{
cc26xx_web_demo_sensor_reading_t *reading = NULL;
for(reading = list_head(sensor_list);
reading != NULL;
reading = list_item_next(reading)) {
if(reading->type == sens_type) {
return reading;
}
}
return NULL;
}
/*---------------------------------------------------------------------------*/
const cc26xx_web_demo_sensor_reading_t *
cc26xx_web_demo_sensor_first()
{
return list_head(sensor_list);
}
/*---------------------------------------------------------------------------*/
void
cc26xx_web_demo_restore_defaults(void)
{
cc26xx_web_demo_sensor_reading_t *reading = NULL;
leds_on(LEDS_ALL);
for(reading = list_head(sensor_list);
reading != NULL;
reading = list_item_next(reading)) {
reading->publish = 1;
}
#if CC26XX_WEB_DEMO_MQTT_CLIENT
process_post_synch(&mqtt_client_process,
cc26xx_web_demo_load_config_defaults, NULL);
#endif
#if CC26XX_WEB_DEMO_NET_UART
process_post_synch(&net_uart_process, cc26xx_web_demo_load_config_defaults,
NULL);
#endif
save_config();
leds_off(LEDS_ALL);
}
/*---------------------------------------------------------------------------*/
static int
defaults_post_handler(char *key, int key_len, char *val, int val_len)
{
if(key_len != strlen("defaults") ||
strncasecmp(key, "defaults", strlen("defaults")) != 0) {
/* Not ours */
return HTTPD_SIMPLE_POST_HANDLER_UNKNOWN;
}
cc26xx_web_demo_restore_defaults();
return HTTPD_SIMPLE_POST_HANDLER_OK;
}
/*---------------------------------------------------------------------------*/
static int
sensor_readings_handler(char *key, int key_len, char *val, int val_len)
{
cc26xx_web_demo_sensor_reading_t *reading = NULL;
int rv;
for(reading = list_head(sensor_list);
reading != NULL;
reading = list_item_next(reading)) {
if(key_len == strlen(reading->form_field) &&
strncmp(reading->form_field, key, strlen(key)) == 0) {
rv = atoi(val);
/* Be pedantic: only accept 0 and 1, not just any non-zero value */
if(rv == 0) {
reading->publish = 0;
snprintf(reading->converted, CC26XX_WEB_DEMO_CONVERTED_LEN, "\"N/A\"");
} else if(rv == 1) {
reading->publish = 1;
} else {
return HTTPD_SIMPLE_POST_HANDLER_ERROR;
}
return HTTPD_SIMPLE_POST_HANDLER_OK;
}
}
return HTTPD_SIMPLE_POST_HANDLER_UNKNOWN;
}
/*---------------------------------------------------------------------------*/
HTTPD_SIMPLE_POST_HANDLER(sensor, sensor_readings_handler);
HTTPD_SIMPLE_POST_HANDLER(defaults, defaults_post_handler);
/*---------------------------------------------------------------------------*/
static void
get_batmon_reading(void *data)
{
int value;
char *buf;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
if(batmon_temp_reading.publish) {
value = batmon_sensor.value(BATMON_SENSOR_TYPE_TEMP);
if(value != CC26XX_SENSOR_READING_ERROR) {
batmon_temp_reading.raw = value;
buf = batmon_temp_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d", value);
}
}
if(batmon_volt_reading.publish) {
value = batmon_sensor.value(BATMON_SENSOR_TYPE_VOLT);
if(value != CC26XX_SENSOR_READING_ERROR) {
batmon_volt_reading.raw = value;
buf = batmon_volt_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d", (value * 125) >> 5);
}
}
ctimer_set(&batmon_timer, next, get_batmon_reading, NULL);
}
/*---------------------------------------------------------------------------*/
#if BOARD_SENSORTAG
/*---------------------------------------------------------------------------*/
static void
compare_and_update(cc26xx_web_demo_sensor_reading_t *reading)
{
if(reading->last == reading->raw) {
reading->changed = 0;
} else {
reading->last = reading->raw;
reading->changed = 1;
}
}
/*---------------------------------------------------------------------------*/
static void
print_mpu_reading(int reading, char *buf)
{
char *loc_buf = buf;
if(reading < 0) {
sprintf(loc_buf, "-");
reading = -reading;
loc_buf++;
}
sprintf(loc_buf, "%d.%02d", reading / 100, reading % 100);
}
/*---------------------------------------------------------------------------*/
static void
get_bmp_reading()
{
int value;
char *buf;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
if(bmp_pres_reading.publish) {
value = bmp_280_sensor.value(BMP_280_SENSOR_TYPE_PRESS);
if(value != CC26XX_SENSOR_READING_ERROR) {
bmp_pres_reading.raw = value;
compare_and_update(&bmp_pres_reading);
buf = bmp_pres_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%02d", value / 100,
value % 100);
}
}
if(bmp_temp_reading.publish) {
value = bmp_280_sensor.value(BMP_280_SENSOR_TYPE_TEMP);
if(value != CC26XX_SENSOR_READING_ERROR) {
bmp_temp_reading.raw = value;
compare_and_update(&bmp_temp_reading);
buf = bmp_temp_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%02d", value / 100,
value % 100);
}
}
SENSORS_DEACTIVATE(bmp_280_sensor);
ctimer_set(&bmp_timer, next, init_bmp_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_tmp_reading()
{
int value;
char *buf;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
if(tmp_amb_reading.publish || tmp_obj_reading.publish) {
if(tmp_007_sensor.value(TMP_007_SENSOR_TYPE_ALL) ==
CC26XX_SENSOR_READING_ERROR) {
SENSORS_DEACTIVATE(tmp_007_sensor);
ctimer_set(&tmp_timer, next, init_tmp_reading, NULL);
}
}
if(tmp_amb_reading.publish) {
value = tmp_007_sensor.value(TMP_007_SENSOR_TYPE_AMBIENT);
tmp_amb_reading.raw = value;
compare_and_update(&tmp_amb_reading);
buf = tmp_amb_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%03d", value / 1000,
value % 1000);
}
if(tmp_obj_reading.publish) {
value = tmp_007_sensor.value(TMP_007_SENSOR_TYPE_OBJECT);
tmp_obj_reading.raw = value;
compare_and_update(&tmp_obj_reading);
buf = tmp_obj_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%03d", value / 1000,
value % 1000);
}
SENSORS_DEACTIVATE(tmp_007_sensor);
ctimer_set(&tmp_timer, next, init_tmp_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_hdc_reading()
{
int value;
char *buf;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
if(hdc_temp_reading.publish) {
value = hdc_1000_sensor.value(HDC_1000_SENSOR_TYPE_TEMP);
if(value != CC26XX_SENSOR_READING_ERROR) {
hdc_temp_reading.raw = value;
compare_and_update(&hdc_temp_reading);
buf = hdc_temp_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%02d", value / 100,
value % 100);
}
}
if(hdc_hum_reading.publish) {
value = hdc_1000_sensor.value(HDC_1000_SENSOR_TYPE_HUMIDITY);
if(value != CC26XX_SENSOR_READING_ERROR) {
hdc_hum_reading.raw = value;
compare_and_update(&hdc_hum_reading);
buf = hdc_hum_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%02d", value / 100,
value % 100);
}
}
ctimer_set(&hdc_timer, next, init_hdc_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_light_reading()
{
int value;
char *buf;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
value = opt_3001_sensor.value(0);
if(value != CC26XX_SENSOR_READING_ERROR) {
opt_reading.raw = value;
compare_and_update(&opt_reading);
buf = opt_reading.converted;
memset(buf, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
snprintf(buf, CC26XX_WEB_DEMO_CONVERTED_LEN, "%d.%02d", value / 100,
value % 100);
}
/* The OPT will turn itself off, so we don't need to call its DEACTIVATE */
ctimer_set(&opt_timer, next, init_light_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_mpu_reading()
{
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
int raw;
if(mpu_gyro_x_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_X);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_gyro_x_reading.raw = raw;
}
}
if(mpu_gyro_y_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_Y);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_gyro_y_reading.raw = raw;
}
}
if(mpu_gyro_z_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_Z);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_gyro_z_reading.raw = raw;
}
}
if(mpu_acc_x_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_X);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_acc_x_reading.raw = raw;
}
}
if(mpu_acc_y_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_Y);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_acc_y_reading.raw = raw;
}
}
if(mpu_acc_z_reading.publish) {
raw = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_Z);
if(raw != CC26XX_SENSOR_READING_ERROR) {
mpu_acc_z_reading.raw = raw;
}
}
SENSORS_DEACTIVATE(mpu_9250_sensor);
if(mpu_gyro_x_reading.publish) {
compare_and_update(&mpu_gyro_x_reading);
memset(mpu_gyro_x_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_gyro_x_reading.raw, mpu_gyro_x_reading.converted);
}
if(mpu_gyro_y_reading.publish) {
compare_and_update(&mpu_gyro_y_reading);
memset(mpu_gyro_y_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_gyro_y_reading.raw, mpu_gyro_y_reading.converted);
}
if(mpu_gyro_z_reading.publish) {
compare_and_update(&mpu_gyro_z_reading);
memset(mpu_gyro_z_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_gyro_z_reading.raw, mpu_gyro_z_reading.converted);
}
if(mpu_acc_x_reading.publish) {
compare_and_update(&mpu_acc_x_reading);
memset(mpu_acc_x_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_acc_x_reading.raw, mpu_acc_x_reading.converted);
}
if(mpu_acc_y_reading.publish) {
compare_and_update(&mpu_acc_y_reading);
memset(mpu_acc_y_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_acc_y_reading.raw, mpu_acc_y_reading.converted);
}
if(mpu_acc_z_reading.publish) {
compare_and_update(&mpu_acc_z_reading);
memset(mpu_acc_z_reading.converted, 0, CC26XX_WEB_DEMO_CONVERTED_LEN);
print_mpu_reading(mpu_acc_z_reading.raw, mpu_acc_z_reading.converted);
}
/* We only use the single timer */
ctimer_set(&mpu_timer, next, init_mpu_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
init_tmp_reading(void *data)
{
if(tmp_amb_reading.publish || tmp_obj_reading.publish) {
SENSORS_ACTIVATE(tmp_007_sensor);
} else {
ctimer_set(&tmp_timer, CLOCK_SECOND, init_tmp_reading, NULL);
}
}
/*---------------------------------------------------------------------------*/
static void
init_bmp_reading(void *data)
{
if(bmp_pres_reading.publish || bmp_temp_reading.publish) {
SENSORS_ACTIVATE(bmp_280_sensor);
} else {
ctimer_set(&bmp_timer, CLOCK_SECOND, init_bmp_reading, NULL);
}
}
/*---------------------------------------------------------------------------*/
static void
init_hdc_reading(void *data)
{
if(hdc_hum_reading.publish || hdc_temp_reading.publish) {
SENSORS_ACTIVATE(hdc_1000_sensor);
} else {
ctimer_set(&hdc_timer, CLOCK_SECOND, init_hdc_reading, NULL);
}
}
/*---------------------------------------------------------------------------*/
static void
init_light_reading(void *data)
{
if(opt_reading.publish) {
SENSORS_ACTIVATE(opt_3001_sensor);
} else {
ctimer_set(&opt_timer, CLOCK_SECOND, init_light_reading, NULL);
}
}
/*---------------------------------------------------------------------------*/
static void
init_mpu_reading(void *data)
{
int readings_bitmap = 0;
if(mpu_acc_x_reading.publish || mpu_acc_y_reading.publish ||
mpu_acc_z_reading.publish) {
readings_bitmap |= MPU_9250_SENSOR_TYPE_ACC;
}
if(mpu_gyro_x_reading.publish || mpu_gyro_y_reading.publish ||
mpu_gyro_z_reading.publish) {
readings_bitmap |= MPU_9250_SENSOR_TYPE_GYRO;
}
if(readings_bitmap) {
mpu_9250_sensor.configure(SENSORS_ACTIVE, readings_bitmap);
} else {
ctimer_set(&mpu_timer, CLOCK_SECOND, init_mpu_reading, NULL);
}
}
#endif
/*---------------------------------------------------------------------------*/
static void
init_sensor_readings(void)
{
/*
* Make a first pass and get all initial sensor readings. This will also
* trigger periodic value updates
*/
get_batmon_reading(NULL);
#if BOARD_SENSORTAG
init_bmp_reading(NULL);
init_light_reading(NULL);
init_hdc_reading(NULL);
init_tmp_reading(NULL);
init_mpu_reading(NULL);
#endif /* BOARD_SENSORTAG */
return;
}
/*---------------------------------------------------------------------------*/
static void
init_sensors(void)
{
list_add(sensor_list, &batmon_temp_reading);
list_add(sensor_list, &batmon_volt_reading);
SENSORS_ACTIVATE(batmon_sensor);
#if BOARD_SENSORTAG
list_add(sensor_list, &bmp_pres_reading);
list_add(sensor_list, &bmp_temp_reading);
list_add(sensor_list, &tmp_obj_reading);
list_add(sensor_list, &tmp_amb_reading);
list_add(sensor_list, &opt_reading);
list_add(sensor_list, &hdc_hum_reading);
list_add(sensor_list, &hdc_temp_reading);
list_add(sensor_list, &mpu_acc_x_reading);
list_add(sensor_list, &mpu_acc_y_reading);
list_add(sensor_list, &mpu_acc_z_reading);
list_add(sensor_list, &mpu_gyro_x_reading);
list_add(sensor_list, &mpu_gyro_y_reading);
list_add(sensor_list, &mpu_gyro_z_reading);
SENSORS_ACTIVATE(reed_relay_sensor);
#endif
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(cc26xx_web_demo_process, ev, data)
{
PROCESS_BEGIN();
printf("CC26XX Web Demo Process\n");
init_sensors();
cc26xx_web_demo_publish_event = process_alloc_event();
cc26xx_web_demo_config_loaded_event = process_alloc_event();
cc26xx_web_demo_load_config_defaults = process_alloc_event();
/* Start all other (enabled) processes first */
process_start(&httpd_simple_process, NULL);
#if CC26XX_WEB_DEMO_COAP_SERVER
process_start(&coap_server_process, NULL);
#endif
#if CC26XX_WEB_DEMO_6LBR_CLIENT
process_start(&cetic_6lbr_client_process, NULL);
#endif
#if CC26XX_WEB_DEMO_MQTT_CLIENT
process_start(&mqtt_client_process, NULL);
#endif
#if CC26XX_WEB_DEMO_NET_UART
process_start(&net_uart_process, NULL);
#endif
/*
* Now that processes have set their own config default values, set our
* own defaults and restore saved config from flash...
*/
cc26xx_web_demo_config.sensors_bitmap = 0xFFFFFFFF; /* all on by default */
load_config();
/*
* Notify all other processes (basically the ones in this demo) that the
* configuration has been loaded from flash, in case they care
*/
process_post(PROCESS_BROADCAST, cc26xx_web_demo_config_loaded_event, NULL);
init_sensor_readings();
httpd_simple_register_post_handler(&sensor_handler);
httpd_simple_register_post_handler(&defaults_handler);
etimer_set(&et, CC26XX_WEB_DEMO_NET_CONNECT_PERIODIC);
/*
* Update all sensor readings on a configurable sensors_event
* (e.g a button press / or reed trigger)
*/
while(1) {
if(ev == sensors_event && data == CC26XX_WEB_DEMO_SENSOR_READING_TRIGGER) {
if((CC26XX_WEB_DEMO_SENSOR_READING_TRIGGER)->value(
BUTTON_SENSOR_VALUE_DURATION) > CLOCK_SECOND * 5) {
printf("Restoring defaults!\n");
cc26xx_web_demo_restore_defaults();
} else {
init_sensor_readings();
process_post(PROCESS_BROADCAST, cc26xx_web_demo_publish_event, NULL);
}
} else if(ev == PROCESS_EVENT_TIMER && etimer_expired(&et)) {
if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
leds_on(CC26XX_WEB_DEMO_STATUS_LED);
ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);
etimer_set(&et, CC26XX_WEB_DEMO_NET_CONNECT_PERIODIC);
}
} else if(ev == httpd_simple_event_new_config) {
save_config();
#if BOARD_SENSORTAG
} else if(ev == sensors_event && data == &bmp_280_sensor) {
get_bmp_reading();
} else if(ev == sensors_event && data == &opt_3001_sensor) {
get_light_reading();
} else if(ev == sensors_event && data == &hdc_1000_sensor) {
get_hdc_reading();
} else if(ev == sensors_event && data == &tmp_007_sensor) {
get_tmp_reading();
} else if(ev == sensors_event && data == &mpu_9250_sensor) {
get_mpu_reading();
#endif
}
PROCESS_YIELD();
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
/**
* @}
*/