osd-contiki/lib/maca.c
2010-03-30 11:50:12 -04:00

981 lines
24 KiB
C

#include <mc1322x.h>
#include <stdio.h>
#ifndef DEBUG_MACA
#define DEBUG_MACA 0
#endif
#if (DEBUG_MACA == 0)
#define PRINTF(...)
#else
#define PRINTF(...) printf(__VA_ARGS__)
#endif
#ifndef NUM_PACKETS
#define NUM_PACKETS 8
#endif
/* for 250kHz clock */
#define MACA_CLOCK_DIV 95
/* (32 chips/sym) * (sym/4bits) * (8bits/byte) = (64 chips/byte) */
/* (8 chips/clk) * (byte/64 chips) = byte/8clks */
#define CLK_PER_BYTE 8
#ifndef RECV_SOFTIMEOUT
#define RECV_SOFTIMEOUT (32*128*CLK_PER_BYTE)
#endif
#define reg(x) (*(volatile uint32_t *)(x))
static volatile packet_t packet_pool[NUM_PACKETS];
static volatile packet_t *free_head, *rx_end, *tx_end, *dma_tx, *dma_rx = 0;
/* rx_head and tx_head are visible to the outside */
/* so you can peek at it and see if there is data */
/* waiting for you, or data still to be sent */
volatile packet_t *rx_head, *tx_head;
/* used for ack recpetion if the packet_pool goes empty */
/* doesn't go back into the pool when freed */
static volatile packet_t dummy_ack;
enum posts {
NO_POST = 0,
TX_POST,
RX_POST,
MAX_POST,
};
static volatile uint8_t last_post = NO_POST;
#define safe_irq_disable(x) volatile uint32_t saved_irq; saved_irq = *INTENABLE; disable_irq(x)
#define irq_restore() *INTENABLE = saved_irq
volatile uint8_t fcs_mode = USE_FCS;
void maca_init(void) {
reset_maca();
radio_init();
flyback_init();
init_phy();
free_all_packets();
/* initial radio command */
/* nop, promiscuous, no cca */
*MACA_CONTROL = (1 << PRM) | (NO_CCA << MODE);
enable_irq(MACA);
maca_isr();
}
#define print_packets(x) Print_Packets(x)
void Print_Packets(char *s) {
volatile packet_t *p;
int i = 0;
printf("packet pool after %s:\n\r",s);
p = free_head;
printf("free_head: 0x%lx ", (uint32_t) free_head);
while(p != 0) {
i++;
p = p->left;
printf("->0x%lx", (uint32_t) p);
}
printf("\n\r");
p = tx_head;
printf("tx_head: 0x%lx ", (uint32_t) tx_head);
while(p != 0) {
i++;
p = p->left;
printf("->0x%lx", (uint32_t) p);
}
printf("\n\r");
p = rx_head;
printf("rx_head: 0x%lx ", (uint32_t) rx_head);
while(p != 0) {
i++;
p = p->left;
printf("->0x%lx", (uint32_t) p);
}
printf("\n\r");
printf("found %d packets\n\r",i);
}
/* public packet routines */
/* heads are to the right */
/* ends are to the left */
void free_packet(volatile packet_t *p) {
safe_irq_disable(MACA);
if(!p) { PRINTF("free_packet passed packet 0\n\r"); return; }
if(p == &dummy_ack) { return; }
p->length = 0; p->offset = 0;
p->left = free_head; p->right = 0;
free_head = p;
irq_restore();
return;
}
volatile packet_t* get_free_packet(void) {
volatile packet_t *p;
safe_irq_disable(MACA);
p = free_head;
if( p != 0 ) {
free_head = p->left;
free_head->right = 0;
}
// print_packets("get_free_packet");
irq_restore();
return p;
}
void post_receive(void) {
disable_irq(MACA);
last_post = RX_POST;
/* this sets the rxlen field */
/* this is undocumented but very important */
/* you will not receive anything without setting it */
*MACA_TXLEN = (MAX_PACKET_SIZE << 16);
if(dma_rx == 0) {
dma_rx = get_free_packet();
if (dma_rx == 0) {
PRINTF("trying to fill MACA_DMARX in post_receieve but out of packet buffers\n\r");
/* set the sftclock so that we return to the maca_isr */
*MACA_SFTCLK = *MACA_CLK + RECV_SOFTIMEOUT; /* soft timeout */
*MACA_TMREN = (1 << maca_tmren_sft);
/* no free buffers, so don't start a reception */
enable_irq(MACA);
return;
}
}
*MACA_DMARX = (uint32_t)&(dma_rx->data[0]);
/* with timeout */
*MACA_SFTCLK = *MACA_CLK + RECV_SOFTIMEOUT; /* soft timeout */
*MACA_TMREN = (1 << maca_tmren_sft);
/* start the receive sequence */
enable_irq(MACA);
*MACA_CONTROL = ( (1 << maca_ctrl_asap) |
( 4 << PRECOUNT) |
( fcs_mode << NOFC ) |
(1 << maca_ctrl_auto) |
(1 << maca_ctrl_prm) |
(maca_ctrl_seq_rx));
/* status bit 10 is set immediately */
/* then 11, 10, and 9 get set */
/* they are cleared once we get back to maca_isr */
}
volatile packet_t* rx_packet(void) {
volatile packet_t *p;
safe_irq_disable(MACA);
p = rx_head;
if( p != 0 ) {
rx_head = p->left;
rx_head->right = 0;
}
// print_packets("rx_packet");
irq_restore();
return p;
}
void post_tx(void) {
/* set dma tx pointer to the payload */
/* and set the tx len */
disable_irq(MACA);
last_post = TX_POST;
dma_tx = tx_head;
*MACA_TXLEN = (uint32_t)((dma_tx->length) + 2);
*MACA_DMATX = (uint32_t)&(dma_tx->data[ 0 + dma_tx->offset]);
if(dma_rx == 0) {
dma_rx = get_free_packet();
if (dma_rx == 0) {
dma_rx = &dummy_ack;
PRINTF("trying to fill MACA_DMARX on post_tx but out of packet buffers\n\r");
}
}
*MACA_DMARX = (uint32_t)&(dma_rx->data[0]);
/* disable soft timeout clock */
/* disable start clock */
*MACA_TMRDIS = (1 << maca_tmren_sft) | ( 1<< maca_tmren_cpl) | ( 1 << maca_tmren_strt ) ;
/* set complete clock to long value */
/* acts like a watchdog in case the MACA locks up */
*MACA_CPLCLK = *MACA_CLK + (CLK_PER_BYTE * 256);
/* enable complete clock */
*MACA_TMREN = (1 << maca_tmren_cpl);
enable_irq(MACA);
*MACA_CONTROL = ( (1 << maca_ctrl_prm) | ( 4 << PRECOUNT) |
(maca_ctrl_mode_no_cca << maca_ctrl_mode) |
(1 << maca_ctrl_asap) |
(maca_ctrl_seq_tx));
/* status bit 10 is set immediately */
/* then 11, 10, and 9 get set */
/* they are cleared once we get back to maca_isr */
}
void tx_packet(volatile packet_t *p) {
safe_irq_disable(MACA);
if(!p) { PRINTF("tx_packet passed packet 0\n\r"); return; }
if(tx_head == 0) {
/* start a new queue if empty */
tx_end = p;
tx_end->left = 0; tx_end->right = 0;
tx_head = tx_end;
} else {
/* add p to the end of the queue */
tx_end->left = p;
p->right = tx_end;
/* move the queue */
tx_end = p; tx_end->left = 0;
}
// print_packets("tx packet");
irq_restore();
return;
}
void free_all_packets(void) {
volatile int i;
safe_irq_disable(MACA);
free_head = 0;
for(i=0; i<NUM_PACKETS; i++) {
free_packet((volatile packet_t *)&(packet_pool[i]));
}
rx_head = 0; rx_end = 0;
tx_head = 0; tx_end = 0;
irq_restore();
return;
}
/* private routines used by driver */
void free_tx_head(void) {
volatile packet_t *p;
safe_irq_disable(MACA);
p = tx_head;
tx_head = tx_head->left;
if(tx_head == 0) { tx_end = 0; }
free_packet(p);
// print_packets("free tx head");
irq_restore();
return;
}
void add_to_rx(volatile packet_t *p) {
safe_irq_disable(MACA);
if(!p) { PRINTF("add_to_rx passed packet 0\n\r"); return; }
p->offset = 1; /* first byte is the length */
if(rx_head == 0) {
/* start a new queue if empty */
rx_end = p;
rx_end->left = 0; rx_end->right = 0;
rx_head = rx_end;
} else {
rx_end->left = p;
p->right = rx_end;
rx_end = p; rx_end->left = 0;
}
// print_packets("add to rx");
irq_restore();
return;
}
void decode_status(void) {
volatile uint32_t code;
code = get_field(*MACA_STATUS,CODE);
/* PRINTF("status code 0x%x\n\r",code); */
switch(code)
{
case ABORTED:
{
// PRINTF("maca: aborted\n\r");
ResumeMACASync();
break;
}
case NOT_COMPLETED:
{
// PRINTF("maca: not completed\n\r");
ResumeMACASync();
break;
}
case CODE_TIMEOUT:
{
// PRINTF("maca: timeout\n\r");
ResumeMACASync();
break;
}
case NO_ACK:
{
PRINTF("maca: no ack\n\r");
ResumeMACASync();
break;
}
case EXT_TIMEOUT:
{
// PRINTF("maca: ext timeout\n\r");
ResumeMACASync();
break;
}
case EXT_PND_TIMEOUT:
{
PRINTF("maca: ext pnd timeout\n\r");
ResumeMACASync();
break;
}
case SUCCESS:
{
//PRINTF("maca: success\n\r");
ResumeMACASync();
break;
}
default:
{
PRINTF("status: %x", *MACA_STATUS);
ResumeMACASync();
}
}
}
void maca_isr(void) {
// print_packets("maca_isr");
if (bit_is_set(*MACA_STATUS, maca_status_ovr))
{ PRINTF("maca overrun\n\r"); }
if (bit_is_set(*MACA_STATUS, maca_status_busy))
{ PRINTF("maca busy\n\r"); }
if (bit_is_set(*MACA_STATUS, maca_status_crc))
{ PRINTF("maca crc error\n\r"); }
if (bit_is_set(*MACA_STATUS, maca_status_to))
{ PRINTF("maca timeout\n\r"); }
if (data_indication_irq()) {
*MACA_CLRIRQ = (1 << maca_irq_di);
dma_rx->length = *MACA_GETRXLVL - 2; /* packet length does not include FCS */
// PRINTF("maca data ind %x %d\n\r", dma_rx, dma_rx->length);
if(maca_rx_callback != 0) { maca_rx_callback(dma_rx); }
add_to_rx(dma_rx);
dma_rx = 0;
}
if (filter_failed_irq()) {
PRINTF("maca filter failed\n\r");
ResumeMACASync();
*MACA_CLRIRQ = (1 << maca_irq_flt);
}
if (checksum_failed_irq()) {
PRINTF("maca checksum failed\n\r");
ResumeMACASync();
*MACA_CLRIRQ = (1 << maca_irq_crc);
}
if (softclock_irq()) {
*MACA_CLRIRQ = (1 << maca_irq_sftclk);
}
if (poll_irq()) {
*MACA_CLRIRQ = (1 << maca_irq_poll);
}
if(action_complete_irq()) {
/* PRINTF("maca action complete %d\n\r", get_field(*MACA_CONTROL,SEQUENCE)); */
if(last_post == TX_POST) {
if(maca_tx_callback != 0) { maca_tx_callback(tx_head); }
free_tx_head();
last_post = NO_POST;
}
ResumeMACASync();
*MACA_CLRIRQ = (1 << maca_irq_acpl);
}
decode_status();
if (*MACA_IRQ != 0)
{ PRINTF("*MACA_IRQ %x\n\r", *MACA_IRQ); }
if(tx_head != 0) {
post_tx();
} else {
post_receive();
}
}
static uint8_t ram_values[4];
void init_phy(void)
{
// *MACA_TMREN = (1 << maca_tmren_strt) | (1 << maca_tmren_cpl);
*MACA_CLKDIV = MACA_CLOCK_DIV;
*MACA_WARMUP = 0x00180012;
*MACA_EOFDELAY = 0x00000004;
*MACA_CCADELAY = 0x001a0022;
*MACA_TXCCADELAY = 0x00000025;
*MACA_FRAMESYNC0 = 0x000000A7;
*MACA_CLK = 0x00000008;
*MACA_MASKIRQ = ((1 << maca_irq_rst) |
(1 << maca_irq_acpl) |
(1 << maca_irq_cm) |
(1 << maca_irq_flt) |
(1 << maca_irq_crc) |
(1 << maca_irq_di) |
(1 << maca_irq_sftclk)
);
*MACA_SLOTOFFSET = 0x00350000;
}
void reset_maca(void)
{
volatile uint32_t cnt;
*MACA_RESET = (1 << maca_reset_rst);
for(cnt = 0; cnt < 100; cnt++) {};
*MACA_RESET = (1 << maca_reset_clkon);
*MACA_CONTROL = maca_ctrl_seq_nop;
for(cnt = 0; cnt < 400000; cnt++) {};
/* Clear all interrupts. */
*MACA_CLRIRQ = 0xffff;
}
/*
004030c4 <SMAC_InitFlybackSettings>:
4030c4: 4806 ldr r0, [pc, #24] (4030e0 <SMAC_InitFlybackSettings+0x1c>) // r0 gets base 0x80009a00
4030c6: 6881 ldr r1, [r0, #8] // r1 gets *(0x80009a08)
4030c8: 4806 ldr r0, [pc, #24] (4030e4 <SMAC_InitFlybackSettings+0x20>) // r0 gets 0x0000f7df
4030ca: 4308 orrs r0, r1 // or them, r0 has it
4030cc: 4904 ldr r1, [pc, #16] (4030e0 <SMAC_InitFlybackSettings+0x1c>) // r1 gets base 0x80009a00
4030ce: 6088 str r0, [r1, #8] // put r0 into 0x80009a08
4030d0: 0008 lsls r0, r1, #0 // r0 gets r1, r0 is the base now
4030d2: 4905 ldr r1, [pc, #20] (4030e8 <SMAC_InitFlybackSettings+0x24>) // r1 gets 0x00ffffff
4030d4: 60c1 str r1, [r0, #12] // put 0x00ffffff into base+12
4030d6: 0b09 lsrs r1, r1, #12 // r1 = 0x00ffffff >> 12
4030d8: 6101 str r1, [r0, #16] // put r1 base+16
4030da: 2110 movs r1, #16 // r1 gets 16
4030dc: 6001 str r1, [r0, #0] // put r1 in the base
4030de: 4770 bx lr // return
4030e0: 80009a00 .word 0x80009a00
4030e4: 0000f7df .word 0x0000f7df
4030e8: 00ffffff .word 0x00ffffff
*/
/* tested and is good */
#define RF_BASE 0x80009a00
void flyback_init(void) {
uint32_t val8, or;
val8 = *(volatile uint32_t *)(RF_BASE+8);
or = val8 | 0x0000f7df;
*(volatile uint32_t *)(RF_BASE+8) = or;
*(volatile uint32_t *)(RF_BASE+12) = 0x00ffffff;
*(volatile uint32_t *)(RF_BASE+16) = (((uint32_t)0x00ffffff)>>12);
*(volatile uint32_t *)(RF_BASE) = 16;
/* good luck and godspeed */
}
#define MAX_SEQ1 2
const uint32_t addr_seq1[MAX_SEQ1] = {
0x80003048,
0x8000304c,
};
const uint32_t data_seq1[MAX_SEQ1] = {
0x00000f78,
0x00607707,
};
#define MAX_SEQ2 2
const uint32_t addr_seq2[MAX_SEQ2] = {
0x8000a050,
0x8000a054,
};
const uint32_t data_seq2[MAX_SEQ2] = {
0x0000047b,
0x0000007b,
};
#define MAX_CAL3_SEQ1 3
const uint32_t addr_cal3_seq1[MAX_CAL3_SEQ1] = { 0x80009400,0x80009a04,0x80009a00, };
const uint32_t data_cal3_seq1[MAX_CAL3_SEQ1] = {0x00020017,0x8185a0a4,0x8c900025, };
#define MAX_CAL3_SEQ2 2
const uint32_t addr_cal3_seq2[MAX_CAL3_SEQ2] = { 0x80009a00,0x80009a00,};
const uint32_t data_cal3_seq2[MAX_CAL3_SEQ2] = { 0x8c900021,0x8c900027,};
#define MAX_CAL3_SEQ3 1
const uint32_t addr_cal3_seq3[MAX_CAL3_SEQ3] = { 0x80009a00 };
const uint32_t data_cal3_seq3[MAX_CAL3_SEQ3] = { 0x8c900000 };
#define MAX_CAL5 4
const uint32_t addr_cal5[MAX_CAL5] = {
0x80009400,
0x8000a050,
0x8000a054,
0x80003048,
};
const uint32_t data_cal5[MAX_CAL5] = {
0x00000017,
0x00000000,
0x00000000,
0x00000f00,
};
#define MAX_DATA 43
const uint32_t addr_reg_rep[MAX_DATA] = { 0x80004118,0x80009204,0x80009208,0x8000920c,0x80009210,0x80009300,0x80009304,0x80009308,0x8000930c,0x80009310,0x80009314,0x80009318,0x80009380,0x80009384,0x80009388,0x8000938c,0x80009390,0x80009394,0x8000a008,0x8000a018,0x8000a01c,0x80009424,0x80009434,0x80009438,0x8000943c,0x80009440,0x80009444,0x80009448,0x8000944c,0x80009450,0x80009460,0x80009464,0x8000947c,0x800094e0,0x800094e4,0x800094e8,0x800094ec,0x800094f0,0x800094f4,0x800094f8,0x80009470,0x8000981c,0x80009828 };
const uint32_t data_reg_rep[MAX_DATA] = { 0x00180012,0x00000605,0x00000504,0x00001111,0x0fc40000,0x20046000,0x4005580c,0x40075801,0x4005d801,0x5a45d800,0x4a45d800,0x40044000,0x00106000,0x00083806,0x00093807,0x0009b804,0x000db800,0x00093802,0x00000015,0x00000002,0x0000000f,0x0000aaa0,0x01002020,0x016800fe,0x8e578248,0x000000dd,0x00000946,0x0000035a,0x00100010,0x00000515,0x00397feb,0x00180358,0x00000455,0x00000001,0x00020003,0x00040014,0x00240034,0x00440144,0x02440344,0x04440544,0x0ee7fc00,0x00000082,0x0000002a };
void maca_off(void) {
disable_irq(MACA);
/* turn off the radio regulators */
reg(0x80003048) = 0x00000f00;
/* hold the maca in reset */
maca_reset = maca_reset_rst;
}
void maca_on(void) {
/* turn the radio regulators back on */
reg(0x80003048) = 0x00000f78;
/* reinitialize the phy */
reset_maca();
init_phy();
enable_irq(MACA);
maca_isr();
}
/* initialized with 0x4c */
uint8_t ctov[16] = {
0x0b,
0x0b,
0x0b,
0x0a,
0x0d,
0x0d,
0x0c,
0x0c,
0x0f,
0x0e,
0x0e,
0x0e,
0x11,
0x10,
0x10,
0x0f,
};
/* get_ctov thanks to Umberto */
#define _INIT_CTOV_WORD_1 0x00dfbe77
#define _INIT_CTOV_WORD_2 0x023126e9
uint8_t get_ctov( uint32_t r0, uint32_t r1 )
{
r0 = r0 * _INIT_CTOV_WORD_1;
r0 += ( r1 << 22 );
r0 += _INIT_CTOV_WORD_2;
r0 = (uint32_t)(((int32_t)r0) >> 25);
return (uint8_t)r0;
}
/* radio_init has been tested to be good */
void radio_init(void) {
volatile uint32_t i;
/* sequence 1 */
for(i=0; i<MAX_SEQ1; i++) {
*(volatile uint32_t *)(addr_seq1[i]) = data_seq1[i];
}
/* seq 1 delay */
for(i=0; i<0x161a8; i++) { continue; }
/* sequence 2 */
for(i=0; i<MAX_SEQ2; i++) {
*(volatile uint32_t *)(addr_seq2[i]) = data_seq2[i];
}
/* modem val */
*(volatile uint32_t *)0x80009000 = 0x80050100;
/* cal 3 seq 1*/
for(i=0; i<MAX_CAL3_SEQ1; i++) {
*(volatile uint32_t *)(addr_cal3_seq1[i]) = data_cal3_seq1[i];
}
/* cal 3 delay */
for(i=0; i<0x11194; i++) { continue; }
/* cal 3 seq 2*/
for(i=0; i<MAX_CAL3_SEQ2; i++) {
*(volatile uint32_t *)(addr_cal3_seq2[i]) = data_cal3_seq2[i];
}
/* cal 3 delay */
for(i=0; i<0x11194; i++) { continue; }
/* cal 3 seq 3*/
for(i=0; i<MAX_CAL3_SEQ3; i++) {
*(volatile uint32_t *)(addr_cal3_seq3[i]) = data_cal3_seq3[i];
}
/* cal 5 */
for(i=0; i<MAX_CAL5; i++) {
*(volatile uint32_t *)(addr_cal5[i]) = data_cal5[i];
}
/*reg replacment */
for(i=0; i<MAX_DATA; i++) {
*(volatile uint32_t *)(addr_reg_rep[i]) = data_reg_rep[i];
}
PRINTF("initfromflash\n\r");
*(volatile uint32_t *)(0x80003048) = 0x00000f04; /* bypass the buck */
for(i=0; i<0x161a8; i++) { continue; } /* wait for the bypass to take */
// while((((*(volatile uint32_t *)(0x80003018))>>17) & 1) !=1) { continue; } /* wait for the bypass to take */
*(volatile uint32_t *)(0x80003048) = 0x00000fa4; /* start the regulators */
for(i=0; i<0x161a8; i++) { continue; } /* wait for the bypass to take */
init_from_flash(0x1F000);
PRINTF("ram_values:\n\r");
for(i=0; i<4; i++) {
PRINTF(" 0x%02x\n\r",ram_values[i]);
}
PRINTF("radio_init: ctov parameter 0x%02x\n\r",ram_values[3]);
for(i=0; i<16; i++) {
ctov[i] = get_ctov(i,ram_values[3]);
PRINTF("radio_init: ctov[%d] = 0x%02x\n\r",i,ctov[i]);
}
}
const uint32_t PSMVAL[19] = {
0x0000080f,
0x0000080f,
0x0000080f,
0x0000080f,
0x0000081f,
0x0000081f,
0x0000081f,
0x0000080f,
0x0000080f,
0x0000080f,
0x0000001f,
0x0000000f,
0x0000000f,
0x00000816,
0x0000001b,
0x0000000b,
0x00000802,
0x00000817,
0x00000003,
};
const uint32_t PAVAL[19] = {
0x000022c0,
0x000022c0,
0x000022c0,
0x00002280,
0x00002303,
0x000023c0,
0x00002880,
0x000029f0,
0x000029f0,
0x000029f0,
0x000029c0,
0x00002bf0,
0x000029f0,
0x000028a0,
0x00002800,
0x00002ac0,
0x00002880,
0x00002a00,
0x00002b00,
};
const uint32_t AIMVAL[19] = {
0x000123a0,
0x000163a0,
0x0001a3a0,
0x0001e3a0,
0x000223a0,
0x000263a0,
0x0002a3a0,
0x0002e3a0,
0x000323a0,
0x000363a0,
0x0003a3a0,
0x0003a3a0,
0x0003e3a0,
0x000423a0,
0x000523a0,
0x000423a0,
0x0004e3a0,
0x0004e3a0,
0x0004e3a0,
};
#define RF_REG 0x80009400
void set_demodulator_type(uint8_t demod) {
uint32_t val = reg(RF_REG);
if(demod == DEMOD_NCD) {
val = (val & ~1);
} else {
val = (val | 1);
}
reg(RF_REG) = val;
}
/* tested and seems to be good */
#define ADDR_POW1 0x8000a014
#define ADDR_POW2 ADDR_POW1 + 12
#define ADDR_POW3 ADDR_POW1 + 64
void set_power(uint8_t power) {
safe_irq_disable(MACA);
reg(ADDR_POW1) = PSMVAL[power];
/* see http://devl.org/pipermail/mc1322x/2009-October/000065.html */
/* reg(ADDR_POW2) = (ADDR_POW1>>18) | PAVAL[power]; */
#ifdef USE_PA
reg(ADDR_POW2) = 0xffffdfff & PAVAL[power]; /* single port */
#else
reg(ADDR_POW2) = 0x00002000 | PAVAL[power]; /* dual port */
#endif
reg(ADDR_POW3) = AIMVAL[power];
irq_restore();
}
const uint8_t VCODivI[16] = {
0x2f,
0x2f,
0x2f,
0x2f,
0x2f,
0x2f,
0x2f,
0x2f,
0x30,
0x30,
0x30,
0x2f,
0x30,
0x30,
0x30,
0x30,
};
const uint32_t VCODivF[16] = {
0x00355555,
0x006aaaaa,
0x00a00000,
0x00d55555,
0x010aaaaa,
0x01400000,
0x01755555,
0x01aaaaaa,
0x01e00000,
0x00155555,
0x004aaaaa,
0x00800000,
0x00b55555,
0x00eaaaaa,
0x01200000,
0x01555555,
};
/* tested good */
#define ADDR_CHAN1 0x80009800
#define ADDR_CHAN2 (ADDR_CHAN1+12)
#define ADDR_CHAN3 (ADDR_CHAN1+16)
#define ADDR_CHAN4 (ADDR_CHAN1+48)
void set_channel(uint8_t chan) {
volatile uint32_t tmp;
safe_irq_disable(MACA);
tmp = reg(ADDR_CHAN1);
tmp = tmp & 0xbfffffff;
reg(ADDR_CHAN1) = tmp;
reg(ADDR_CHAN2) = VCODivI[chan];
reg(ADDR_CHAN3) = VCODivF[chan];
tmp = reg(ADDR_CHAN4);
tmp = tmp | 2;
reg(ADDR_CHAN4) = tmp;
tmp = reg(ADDR_CHAN4);
tmp = tmp | 4;
reg(ADDR_CHAN4) = tmp;
tmp = tmp & 0xffffe0ff;
tmp = tmp | (((ctov[chan])<<8)&0x1F00);
reg(ADDR_CHAN4) = tmp;
/* duh! */
irq_restore();
}
#define ROM_END 0x0013ffff
#define ENTRY_EOF 0x00000e0f
/* processes up to 4 words of initialization entries */
/* returns the number of words processed */
uint32_t exec_init_entry(volatile uint32_t *entries, uint8_t *valbuf)
{
volatile uint32_t i;
if(entries[0] <= ROM_END) {
if (entries[0] == 0) {
/* do delay command*/
PRINTF("init_entry: delay 0x%08x\n\r", entries[1]);
for(i=0; i<entries[1]; i++) { continue; }
return 2;
} else if (entries[0] == 1) {
/* do bit set/clear command*/
PRINTF("init_entry: bit set clear 0x%08x 0x%08x 0x%08x\n\r", entries[1], entries[2], entries[3]);
reg(entries[2]) = (reg(entries[2]) & ~entries[1]) | (entries[3] & entries[1]);
return 4;
} else if ((entries[0] >= 16) &&
(entries[0] < 0xfff1)) {
/* store bytes in valbuf */
PRINTF("init_entry: store in valbuf 0x%02x position %d\n\r", entries[1],(entries[0]>>4)-1);
valbuf[(entries[0]>>4)-1] = entries[1];
return 2;
} else if (entries[0] == ENTRY_EOF) {
PRINTF("init_entry: eof ");
return 0;
} else {
/* invalid command code */
PRINTF("init_entry: invaild code 0x%08x\n\r",entries[0]);
return 0;
}
} else { /* address isn't in ROM space */
/* do store value in address command */
PRINTF("init_entry: address value pair - *0x%08x = 0x%08x\n\r",entries[0],entries[1]);
reg(entries[0]) = entries[1];
return 2;
}
}
#define FLASH_INIT_MAGIC 0x00000abc
uint32_t init_from_flash(uint32_t addr) {
nvmType_t type=0;
nvmErr_t err;
volatile uint32_t buf[8];
volatile uint32_t len;
volatile uint32_t i=0,j;
err = nvm_detect(gNvmInternalInterface_c, &type);
PRINTF("nvm_detect returned type 0x%08x err 0x%02x\n\r", type, err);
nvm_setsvar(0);
err = nvm_read(gNvmInternalInterface_c, type, (uint8_t *)buf, addr, 8);
i+=8;
PRINTF("nvm_read returned: 0x%02x\n\r",err);
for(j=0; j<4; j++) {
PRINTF("0x%08x\n\r",buf[j]);
}
if(buf[0] == FLASH_INIT_MAGIC) {
len = buf[1] & 0x0000ffff;
while(i < (len-4)) {
err = nvm_read(gNvmInternalInterface_c, type, (uint8_t *)buf, addr+i, 32);
i += 4*exec_init_entry(buf, ram_values);
}
return i;
} else {
return 0;
}
}
/*
* Do the ABORT-Wait-NOP-Wait sequence in order to prevent MACA malfunctioning.
* This seqeunce is synchronous and no interrupts should be triggered when it is done.
*/
void ResumeMACASync(void)
{
volatile uint32_t clk, TsmRxSteps, LastWarmupStep, LastWarmupData, LastWarmdownStep, LastWarmdownData;
// bool_t tmpIsrStatus;
volatile uint32_t i;
safe_irq_disable(MACA);
// ITC_DisableInterrupt(gMacaInt_c);
// AppInterrupts_ProtectFromMACAIrq(tmpIsrStatus); <- Original from MAC code, but not sure how is it implemented
/* Manual TSM modem shutdown */
/* read TSM_RX_STEPS */
TsmRxSteps = (*((volatile uint32_t *)(0x80009204)));
/* isolate the RX_WU_STEPS */
/* shift left to align with 32-bit addressing */
LastWarmupStep = (TsmRxSteps & 0x1f) << 2;
/* Read "current" TSM step and save this value for later */
LastWarmupData = (*((volatile uint32_t *)(0x80009300 + LastWarmupStep)));
/* isolate the RX_WD_STEPS */
/* right-shift bits down to bit 0 position */
/* left-shift to align with 32-bit addressing */
LastWarmdownStep = ((TsmRxSteps & 0x1f00) >> 8) << 2;
/* write "last warmdown data" to current TSM step to shutdown rx */
LastWarmdownData = (*((volatile uint32_t *)(0x80009300 + LastWarmdownStep)));
(*((volatile uint32_t *)(0x80009300 + LastWarmupStep))) = LastWarmdownData;
/* Abort */
MACA_WRITE(maca_control, 1);
/* Wait ~8us */
for (clk = maca_clk, i = 0; maca_clk - clk < 3 && i < 300; i++)
;
/* NOP */
MACA_WRITE(maca_control, 0);
/* Wait ~8us */
for (clk = maca_clk, i = 0; maca_clk - clk < 3 && i < 300; i++)
;
/* restore original "last warmup step" data to TSM (VERY IMPORTANT!!!) */
(*((volatile uint32_t *)(0x80009300 + LastWarmupStep))) = LastWarmupData;
/* Clear all MACA interrupts - we should have gotten the ABORT IRQ */
MACA_WRITE(maca_clrirq, 0xFFFF);
// AppInterrupts_UnprotectFromMACAIrq(tmpIsrStatus); <- Original from MAC code, but not sure how is it implemented
// ITC_EnableInterrupt(gMacaInt_c);
// enable_irq(MACA);
irq_restore();
}