osd-contiki/examples/cc26xx/cc26xx-demo.c
2016-05-29 15:05:13 +01:00

457 lines
15 KiB
C

/*
* Copyright (c) 2014, Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup cc26xx-platforms
* @{
*
* \defgroup cc26xx-examples CC26xx Example Projects
*
* Example projects for CC26xx-based platforms.
* @{
*
* \defgroup cc26xx-demo CC26xx Demo Project
*
* Example project demonstrating the CC26xx platforms
*
* This example will work for the following boards:
* - srf06-cc26xx: SmartRF06EB + CC26XX EM
* - sensortag-cc26xx: CC26XX sensortag
* - The CC2650 LaunchPad
*
* By default, the example will build for the srf06-cc26xx board. To switch
* between platforms:
* - make clean
* - make BOARD=sensortag-cc26xx savetarget
*
* or
*
* make BOARD=srf06-cc26xx savetarget
*
* This is an IPv6/RPL-enabled example. Thus, if you have a border router in
* your installation (same RDC layer, same PAN ID and RF channel), you should
* be able to ping6 this demo node.
*
* This example also demonstrates CC26xx BLE operation. The process starts
* the BLE beacon daemon (implemented in the RF driver). The daemon will
* send out a BLE beacon periodically. Use any BLE-enabled application (e.g.
* LightBlue on OS X or the TI BLE Multitool smartphone app) and after a few
* seconds the cc26xx device will be discovered.
*
* - etimer/clock : Every CC26XX_DEMO_LOOP_INTERVAL clock ticks the LED defined
* as CC26XX_DEMO_LEDS_PERIODIC will toggle and the device
* will print out readings from some supported sensors
* - sensors : Some sensortag sensors are read asynchronously (see sensor
* documentation). For those, this example will print out
* readings in a staggered fashion at a random interval
* - Buttons : CC26XX_DEMO_SENSOR_1 button will toggle CC26XX_DEMO_LEDS_BUTTON
* - CC26XX_DEMO_SENSOR_2 turns on LEDS_REBOOT and causes a
* watchdog reboot
* - The remaining buttons will just print something
* - The example also shows how to retrieve the duration of a
* button press (in ticks). The driver will generate a
* sensors_changed event upon button release
* - Reed Relay : Will toggle the sensortag buzzer on/off
*
* @{
*
* \file
* Example demonstrating the cc26xx platforms
*/
#include "contiki.h"
#include "sys/etimer.h"
#include "sys/ctimer.h"
#include "dev/leds.h"
#include "dev/watchdog.h"
#include "random.h"
#include "button-sensor.h"
#include "batmon-sensor.h"
#include "board-peripherals.h"
#include "rf-core/rf-ble.h"
#include "ti-lib.h"
#include <stdio.h>
#include <stdint.h>
/*---------------------------------------------------------------------------*/
#define CC26XX_DEMO_LOOP_INTERVAL (CLOCK_SECOND * 20)
#define CC26XX_DEMO_LEDS_PERIODIC LEDS_YELLOW
#define CC26XX_DEMO_LEDS_BUTTON LEDS_RED
#define CC26XX_DEMO_LEDS_REBOOT LEDS_ALL
/*---------------------------------------------------------------------------*/
#define CC26XX_DEMO_SENSOR_NONE (void *)0xFFFFFFFF
#define CC26XX_DEMO_SENSOR_1 &button_left_sensor
#define CC26XX_DEMO_SENSOR_2 &button_right_sensor
#if BOARD_SENSORTAG
#define CC26XX_DEMO_SENSOR_3 CC26XX_DEMO_SENSOR_NONE
#define CC26XX_DEMO_SENSOR_4 CC26XX_DEMO_SENSOR_NONE
#define CC26XX_DEMO_SENSOR_5 &reed_relay_sensor
#elif BOARD_LAUNCHPAD
#define CC26XX_DEMO_SENSOR_3 CC26XX_DEMO_SENSOR_NONE
#define CC26XX_DEMO_SENSOR_4 CC26XX_DEMO_SENSOR_NONE
#define CC26XX_DEMO_SENSOR_5 CC26XX_DEMO_SENSOR_NONE
#else
#define CC26XX_DEMO_SENSOR_3 &button_up_sensor
#define CC26XX_DEMO_SENSOR_4 &button_down_sensor
#define CC26XX_DEMO_SENSOR_5 &button_select_sensor
#endif
/*---------------------------------------------------------------------------*/
static struct etimer et;
/*---------------------------------------------------------------------------*/
PROCESS(cc26xx_demo_process, "cc26xx demo process");
AUTOSTART_PROCESSES(&cc26xx_demo_process);
/*---------------------------------------------------------------------------*/
#if BOARD_SENSORTAG
/*---------------------------------------------------------------------------*/
/*
* Update sensor readings in a staggered fashion every SENSOR_READING_PERIOD
* ticks + a random interval between 0 and SENSOR_READING_RANDOM ticks
*/
#define SENSOR_READING_PERIOD (CLOCK_SECOND * 20)
#define SENSOR_READING_RANDOM (CLOCK_SECOND << 4)
static struct ctimer bmp_timer, opt_timer, hdc_timer, tmp_timer, mpu_timer;
/*---------------------------------------------------------------------------*/
static void init_bmp_reading(void *not_used);
static void init_opt_reading(void *not_used);
static void init_hdc_reading(void *not_used);
static void init_tmp_reading(void *not_used);
static void init_mpu_reading(void *not_used);
/*---------------------------------------------------------------------------*/
static void
print_mpu_reading(int reading)
{
if(reading < 0) {
printf("-");
reading = -reading;
}
printf("%d.%02d", reading / 100, reading % 100);
}
/*---------------------------------------------------------------------------*/
static void
get_bmp_reading()
{
int value;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
value = bmp_280_sensor.value(BMP_280_SENSOR_TYPE_PRESS);
if(value != CC26XX_SENSOR_READING_ERROR) {
printf("BAR: Pressure=%d.%02d hPa\n", value / 100, value % 100);
} else {
printf("BAR: Pressure Read Error\n");
}
value = bmp_280_sensor.value(BMP_280_SENSOR_TYPE_TEMP);
if(value != CC26XX_SENSOR_READING_ERROR) {
printf("BAR: Temp=%d.%02d C\n", value / 100, value % 100);
} else {
printf("BAR: Temperature Read Error\n");
}
SENSORS_DEACTIVATE(bmp_280_sensor);
ctimer_set(&bmp_timer, next, init_bmp_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_tmp_reading()
{
int value;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
value = tmp_007_sensor.value(TMP_007_SENSOR_TYPE_ALL);
if(value == CC26XX_SENSOR_READING_ERROR) {
printf("TMP: Ambient Read Error\n");
return;
}
value = tmp_007_sensor.value(TMP_007_SENSOR_TYPE_AMBIENT);
printf("TMP: Ambient=%d.%03d C\n", value / 1000, value % 1000);
value = tmp_007_sensor.value(TMP_007_SENSOR_TYPE_OBJECT);
printf("TMP: Object=%d.%03d C\n", value / 1000, value % 1000);
SENSORS_DEACTIVATE(tmp_007_sensor);
ctimer_set(&tmp_timer, next, init_tmp_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_hdc_reading()
{
int value;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
value = hdc_1000_sensor.value(HDC_1000_SENSOR_TYPE_TEMP);
if(value != CC26XX_SENSOR_READING_ERROR) {
printf("HDC: Temp=%d.%02d C\n", value / 100, value % 100);
} else {
printf("HDC: Temp Read Error\n");
}
value = hdc_1000_sensor.value(HDC_1000_SENSOR_TYPE_HUMIDITY);
if(value != CC26XX_SENSOR_READING_ERROR) {
printf("HDC: Humidity=%d.%02d %%RH\n", value / 100, value % 100);
} else {
printf("HDC: Humidity Read Error\n");
}
ctimer_set(&hdc_timer, next, init_hdc_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_light_reading()
{
int value;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
value = opt_3001_sensor.value(0);
if(value != CC26XX_SENSOR_READING_ERROR) {
printf("OPT: Light=%d.%02d lux\n", value / 100, value % 100);
} else {
printf("OPT: Light Read Error\n");
}
/* The OPT will turn itself off, so we don't need to call its DEACTIVATE */
ctimer_set(&opt_timer, next, init_opt_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
get_mpu_reading()
{
int value;
clock_time_t next = SENSOR_READING_PERIOD +
(random_rand() % SENSOR_READING_RANDOM);
printf("MPU Gyro: X=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_X);
print_mpu_reading(value);
printf(" deg/sec\n");
printf("MPU Gyro: Y=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_Y);
print_mpu_reading(value);
printf(" deg/sec\n");
printf("MPU Gyro: Z=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_GYRO_Z);
print_mpu_reading(value);
printf(" deg/sec\n");
printf("MPU Acc: X=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_X);
print_mpu_reading(value);
printf(" G\n");
printf("MPU Acc: Y=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_Y);
print_mpu_reading(value);
printf(" G\n");
printf("MPU Acc: Z=");
value = mpu_9250_sensor.value(MPU_9250_SENSOR_TYPE_ACC_Z);
print_mpu_reading(value);
printf(" G\n");
SENSORS_DEACTIVATE(mpu_9250_sensor);
ctimer_set(&mpu_timer, next, init_mpu_reading, NULL);
}
/*---------------------------------------------------------------------------*/
static void
init_bmp_reading(void *not_used)
{
SENSORS_ACTIVATE(bmp_280_sensor);
}
/*---------------------------------------------------------------------------*/
static void
init_opt_reading(void *not_used)
{
SENSORS_ACTIVATE(opt_3001_sensor);
}
/*---------------------------------------------------------------------------*/
static void
init_hdc_reading(void *not_used)
{
SENSORS_ACTIVATE(hdc_1000_sensor);
}
/*---------------------------------------------------------------------------*/
static void
init_tmp_reading(void *not_used)
{
SENSORS_ACTIVATE(tmp_007_sensor);
}
/*---------------------------------------------------------------------------*/
static void
init_mpu_reading(void *not_used)
{
mpu_9250_sensor.configure(SENSORS_ACTIVE, MPU_9250_SENSOR_TYPE_ALL);
}
#endif
/*---------------------------------------------------------------------------*/
static void
get_sync_sensor_readings(void)
{
int value;
printf("-----------------------------------------\n");
value = batmon_sensor.value(BATMON_SENSOR_TYPE_TEMP);
printf("Bat: Temp=%d C\n", value);
value = batmon_sensor.value(BATMON_SENSOR_TYPE_VOLT);
printf("Bat: Volt=%d mV\n", (value * 125) >> 5);
#if BOARD_SMARTRF06EB
SENSORS_ACTIVATE(als_sensor);
value = als_sensor.value(0);
printf("ALS: %d raw\n", value);
SENSORS_DEACTIVATE(als_sensor);
#endif
return;
}
/*---------------------------------------------------------------------------*/
static void
init_sensors(void)
{
#if BOARD_SENSORTAG
SENSORS_ACTIVATE(reed_relay_sensor);
#endif
SENSORS_ACTIVATE(batmon_sensor);
}
/*---------------------------------------------------------------------------*/
static void
init_sensor_readings(void)
{
#if BOARD_SENSORTAG
SENSORS_ACTIVATE(hdc_1000_sensor);
SENSORS_ACTIVATE(tmp_007_sensor);
SENSORS_ACTIVATE(opt_3001_sensor);
SENSORS_ACTIVATE(bmp_280_sensor);
init_mpu_reading(NULL);
#endif
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(cc26xx_demo_process, ev, data)
{
PROCESS_BEGIN();
printf("CC26XX demo\n");
init_sensors();
/* Init the BLE advertisement daemon */
rf_ble_beacond_config(0, BOARD_STRING);
rf_ble_beacond_start();
etimer_set(&et, CC26XX_DEMO_LOOP_INTERVAL);
get_sync_sensor_readings();
init_sensor_readings();
while(1) {
PROCESS_YIELD();
if(ev == PROCESS_EVENT_TIMER) {
if(data == &et) {
leds_toggle(CC26XX_DEMO_LEDS_PERIODIC);
get_sync_sensor_readings();
etimer_set(&et, CC26XX_DEMO_LOOP_INTERVAL);
}
} else if(ev == sensors_event) {
if(data == CC26XX_DEMO_SENSOR_1) {
printf("Left: Pin %d, press duration %d clock ticks\n",
(CC26XX_DEMO_SENSOR_1)->value(BUTTON_SENSOR_VALUE_STATE),
(CC26XX_DEMO_SENSOR_1)->value(BUTTON_SENSOR_VALUE_DURATION));
if((CC26XX_DEMO_SENSOR_1)->value(BUTTON_SENSOR_VALUE_DURATION) >
CLOCK_SECOND) {
printf("Long button press!\n");
}
leds_toggle(CC26XX_DEMO_LEDS_BUTTON);
} else if(data == CC26XX_DEMO_SENSOR_2) {
leds_on(CC26XX_DEMO_LEDS_REBOOT);
watchdog_reboot();
} else if(data == CC26XX_DEMO_SENSOR_3) {
printf("Up\n");
} else if(data == CC26XX_DEMO_SENSOR_4) {
printf("Down\n");
} else if(data == CC26XX_DEMO_SENSOR_5) {
#if BOARD_SENSORTAG
if(buzzer_state()) {
buzzer_stop();
} else {
buzzer_start(1000);
}
} else if(ev == sensors_event && data == &bmp_280_sensor) {
get_bmp_reading();
} else if(ev == sensors_event && data == &opt_3001_sensor) {
get_light_reading();
} else if(ev == sensors_event && data == &hdc_1000_sensor) {
get_hdc_reading();
} else if(ev == sensors_event && data == &tmp_007_sensor) {
get_tmp_reading();
} else if(ev == sensors_event && data == &mpu_9250_sensor) {
get_mpu_reading();
#elif BOARD_SMARTRF06EB
printf("Sel: Pin %d, press duration %d clock ticks\n",
button_select_sensor.value(BUTTON_SENSOR_VALUE_STATE),
button_select_sensor.value(BUTTON_SENSOR_VALUE_DURATION));
#endif
}
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
/**
* @}
* @}
* @}
*/