osd-contiki/platform/stm32nucleo-spirit1/drivers/stm32l1xx_nucleo/stm32l1xx_nucleo.c
2015-07-24 16:30:10 +02:00

844 lines
24 KiB
C

/**
******************************************************************************
* @file stm32l1xx_nucleo.c
* @author MCD Application Team
* @version V1.0.0
* @date 5-September-2014
* @brief This file provides set of firmware functions to manage:
* - LEDs and push-button available on STM32L1XX-Nucleo Kit
* from STMicroelectronics
* - LCD, joystick and microSD available on Adafruit 1.8" TFT LCD
* shield (reference ID 802)
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_nucleo.h"
/** @addtogroup BSP
* @{
*/
/** @defgroup STM32L1XX_NUCLEO STM32L152RE-Nucleo
* @brief This file provides set of firmware functions to manage Leds and push-button
* available on STM32L1XX-Nucleo Kit from STMicroelectronics.
* It provides also LCD, joystick and uSD functions to communicate with
* Adafruit 1.8" TFT LCD shield (reference ID 802)
* @{
*/
/** @defgroup STM32L1XX_NUCLEO_Private_Defines Private Defines
* @{
*/
/**
* @brief STM32L152RE NUCLEO BSP Driver version
*/
#define __STM32L1XX_NUCLEO_BSP_VERSION_MAIN (0x01) /*!< [31:24] main version */
#define __STM32L1XX_NUCLEO_BSP_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
#define __STM32L1XX_NUCLEO_BSP_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */
#define __STM32L1XX_NUCLEO_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32L1XX_NUCLEO_BSP_VERSION ((__STM32L1XX_NUCLEO_BSP_VERSION_MAIN << 24)\
|(__STM32L1XX_NUCLEO_BSP_VERSION_SUB1 << 16)\
|(__STM32L1XX_NUCLEO_BSP_VERSION_SUB2 << 8 )\
|(__STM32L1XX_NUCLEO_BSP_VERSION_RC))
/**
* @brief LINK SD Card
*/
#define SD_DUMMY_BYTE 0xFF
#define SD_NO_RESPONSE_EXPECTED 0x80
/**
* @}
*/
/** @defgroup STM32L1XX_NUCLEO_Private_Variables Private Variables
* @{
*/
//GPIO_TypeDef* GPIO_PORT[LEDn] = {LED2_GPIO_PORT};
//const uint16_t GPIO_PIN[LEDn] = {LED2_PIN};
GPIO_TypeDef* GPIO_PORT[LEDn] = {LED1_GPIO_PORT, LED2_GPIO_PORT, LED3_GPIO_PORT,
LED4_GPIO_PORT, LED5_GPIO_PORT};
const uint16_t GPIO_PIN[LEDn] = {LED1_PIN, LED2_PIN, LED3_PIN,
LED4_PIN, LED5_PIN};
GPIO_TypeDef* BUTTON_PORT[BUTTONn] = {USER_BUTTON_GPIO_PORT};
const uint16_t BUTTON_PIN[BUTTONn] = {USER_BUTTON_PIN};
const uint16_t BUTTON_IRQn[BUTTONn] = {USER_BUTTON_EXTI_IRQn};
/**
* @brief BUS variables
*/
#ifdef HAL_SPI_MODULE_ENABLED
uint32_t SpixTimeout = NUCLEO_SPIx_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
static SPI_HandleTypeDef hnucleo_Spi;
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
static ADC_HandleTypeDef hnucleo_Adc;
/* ADC channel configuration structure declaration */
static ADC_ChannelConfTypeDef sConfig;
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32L1XX_NUCLEO_Private_Functions Private Functions
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
static void SPIx_Init(void);
static void SPIx_Write(uint8_t Value);
static uint32_t SPIx_Read(void);
static void SPIx_Error (void);
static void SPIx_MspInit(void);
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
static void ADCx_Init(void);
static void ADCx_MspInit(ADC_HandleTypeDef *hadc);
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
/* SD IO functions */
void SD_IO_Init(void);
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response);
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response);
void SD_IO_WriteDummy(void);
void SD_IO_WriteByte(uint8_t Data);
uint8_t SD_IO_ReadByte(void);
/* LCD IO functions */
void LCD_IO_Init(void);
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size);
void LCD_IO_WriteReg(uint8_t LCDReg);
void LCD_Delay(uint32_t delay);
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32L1XX_NUCLEO_Exported_Functions Exported Functions
* @{
*/
/**
* @brief This method returns the STM32L1XX NUCLEO BSP Driver revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t BSP_GetVersion(void)
{
return __STM32L1XX_NUCLEO_BSP_VERSION;
}
/** @defgroup STM32L1XX_NUCLEO_LED_Functions LED Functions
* @{
*/
/**
* @brief Configures LED GPIO.
* @param Led: LED to be configured.
* This parameter can be one of the following values:
* @arg LED2
* @retval None
*/
void BSP_LED_Init(Led_TypeDef Led)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* Enable the GPIO_LED Clock */
LEDx_GPIO_CLK_ENABLE(Led);
/* Configure the GPIO_LED pin */
gpioinitstruct.Pin = GPIO_PIN[Led];
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_PULLUP;
gpioinitstruct.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(GPIO_PORT[Led], &gpioinitstruct);
/* Reset PIN to switch off the LED */
HAL_GPIO_WritePin(GPIO_PORT[Led],GPIO_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Turns selected LED On.
* @param Led: Specifies the Led to be set on.
* This parameter can be one of following parameters:
* @arg LED2
* @retval None
*/
void BSP_LED_On(Led_TypeDef Led)
{
HAL_GPIO_WritePin(GPIO_PORT[Led], GPIO_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Turns selected LED Off.
* @param Led: Specifies the Led to be set off.
* This parameter can be one of following parameters:
* @arg LED2
* @retval None
*/
void BSP_LED_Off(Led_TypeDef Led)
{
HAL_GPIO_WritePin(GPIO_PORT[Led], GPIO_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Toggles the selected LED.
* @param Led: Specifies the Led to be toggled.
* This parameter can be one of following parameters:
* @arg LED2
* @retval None
*/
void BSP_LED_Toggle(Led_TypeDef Led)
{
HAL_GPIO_TogglePin(GPIO_PORT[Led], GPIO_PIN[Led]);
}
/**
* @}
*/
/** @defgroup STM32L1XX_NUCLEO_BUTTON_Functions BUTTON Functions
* @{
*/
/**
* @brief Configures Button GPIO and EXTI Line.
* @param Button: Specifies the Button to be configured.
* This parameter should be: BUTTON_USER
* @param ButtonMode: Specifies Button mode.
* This parameter can be one of following parameters:
* @arg BUTTON_MODE_GPIO: Button will be used as simple IO
* @arg BUTTON_MODE_EXTI: Button will be connected to EXTI line with interrupt
* generation capability
* @retval None
*/
void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef ButtonMode)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* Enable the BUTTON Clock */
BUTTONx_GPIO_CLK_ENABLE(Button);
if (ButtonMode == BUTTON_MODE_GPIO)
{
/* Configure Button pin as input */
gpioinitstruct.Pin = BUTTON_PIN[Button];
gpioinitstruct.Mode = GPIO_MODE_INPUT;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_MEDIUM;
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
}
if (ButtonMode == BUTTON_MODE_EXTI)
{
/* Configure Button pin as input with External interrupt */
gpioinitstruct.Pin = BUTTON_PIN[Button];
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_MEDIUM;
gpioinitstruct.Mode = GPIO_MODE_IT_FALLING;
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
/* Enable and set Button EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(BUTTON_IRQn[Button]), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
}
}
/**
* @brief Returns the selected Button state.
* @param Button: Specifies the Button to be checked.
* This parameter should be: BUTTON_USER
* @retval Button state.
*/
uint32_t BSP_PB_GetState(Button_TypeDef Button)
{
return HAL_GPIO_ReadPin(BUTTON_PORT[Button], BUTTON_PIN[Button]);
}
#ifdef HAL_ADC_MODULE_ENABLED
/**
* @brief Configures joystick available on adafruit 1.8" TFT shield
* managed through ADC to detect motion.
* @retval Joystickstatus (0=> success, 1=> fail)
*/
uint8_t BSP_JOY_Init(void)
{
ADCx_Init();
/* Select Channel 8 to be converted */
sConfig.Channel = ADC_CHANNEL_8;
sConfig.SamplingTime = ADC_SAMPLETIME_16CYCLES;
sConfig.Rank = 1;
/* Return Joystick initialization status */
return HAL_ADC_ConfigChannel(&hnucleo_Adc, &sConfig);
}
/**
* @brief Returns the Joystick key pressed.
* @note To know which Joystick key is pressed we need to detect the voltage
* level on each key output
* - None : 3.3 V / 4095
* - SEL : 1.055 V / 1308
* - DOWN : 0.71 V / 88
* - LEFT : 3.0 V / 3720
* - RIGHT : 0.595 V / 737
* - UP : 1.65 V / 2046
* @retval JOYState_TypeDef: Code of the Joystick key pressed.
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
JOYState_TypeDef state = JOY_NONE;
uint16_t keyconvertedvalue = 0;
/* Start the conversion process */
HAL_ADC_Start(&hnucleo_Adc);
/* Wait for the end of conversion */
HAL_ADC_PollForConversion(&hnucleo_Adc, 10);
/* Check if the continous conversion of regular channel is finished */
if(HAL_ADC_GetState(&hnucleo_Adc) == HAL_ADC_STATE_EOC_REG)
{
/* Get the converted value of regular channel */
keyconvertedvalue = HAL_ADC_GetValue(&hnucleo_Adc);
}
if((keyconvertedvalue > 2010) && (keyconvertedvalue < 2090))
{
state = JOY_UP;
}
else if((keyconvertedvalue > 680) && (keyconvertedvalue < 780))
{
state = JOY_RIGHT;
}
else if((keyconvertedvalue > 1270) && (keyconvertedvalue < 1350))
{
state = JOY_SEL;
}
else if((keyconvertedvalue > 50) && (keyconvertedvalue < 130))
{
state = JOY_DOWN;
}
else if((keyconvertedvalue > 3680) && (keyconvertedvalue < 3760))
{
state = JOY_LEFT;
}
else
{
state = JOY_NONE;
}
/* Return the code of the Joystick key pressed*/
return state;
}
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/** @addtogroup STM32L1XX_NUCLEO_Private_Functions
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
/******************************************************************************
BUS OPERATIONS
*******************************************************************************/
/**
* @brief Initializes SPI MSP.
* @retval None
*/
static void SPIx_MspInit(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
NUCLEO_SPIx_SCK_GPIO_CLK_ENABLE();
NUCLEO_SPIx_MISO_MOSI_GPIO_CLK_ENABLE();
/* Configure SPI SCK */
gpioinitstruct.Pin = NUCLEO_SPIx_SCK_PIN;
gpioinitstruct.Mode = GPIO_MODE_AF_PP;
gpioinitstruct.Pull = GPIO_PULLUP;
gpioinitstruct.Speed = GPIO_SPEED_HIGH;
gpioinitstruct.Alternate = NUCLEO_SPIx_SCK_AF;
HAL_GPIO_Init(NUCLEO_SPIx_SCK_GPIO_PORT, &gpioinitstruct);
/* Configure SPI MISO and MOSI */
gpioinitstruct.Pin = NUCLEO_SPIx_MOSI_PIN;
gpioinitstruct.Alternate = NUCLEO_SPIx_MISO_MOSI_AF;
gpioinitstruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(NUCLEO_SPIx_MISO_MOSI_GPIO_PORT, &gpioinitstruct);
gpioinitstruct.Pin = NUCLEO_SPIx_MISO_PIN;
HAL_GPIO_Init(NUCLEO_SPIx_MISO_MOSI_GPIO_PORT, &gpioinitstruct);
/*** Configure the SPI peripheral ***/
/* Enable SPI clock */
NUCLEO_SPIx_CLK_ENABLE();
}
/**
* @brief Initializes SPI HAL.
* @retval None
*/
static void SPIx_Init(void)
{
if(HAL_SPI_GetState(&hnucleo_Spi) == HAL_SPI_STATE_RESET)
{
/* SPI Config */
hnucleo_Spi.Instance = NUCLEO_SPIx;
/* SPI baudrate is set to 8 MHz maximum (PCLK2/SPI_BaudRatePrescaler = 32/4 = 8 MHz)
to verify these constraints:
- ST7735 LCD SPI interface max baudrate is 15MHz for write and 6.66MHz for read
Since the provided driver doesn't use read capability from LCD, only constraint
on write baudrate is considered.
- SD card SPI interface max baudrate is 25MHz for write/read
- PCLK2 max frequency is 32 MHz
*/
hnucleo_Spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hnucleo_Spi.Init.Direction = SPI_DIRECTION_2LINES;
hnucleo_Spi.Init.CLKPhase = SPI_PHASE_2EDGE;
hnucleo_Spi.Init.CLKPolarity = SPI_POLARITY_HIGH;
hnucleo_Spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
hnucleo_Spi.Init.CRCPolynomial = 7;
hnucleo_Spi.Init.DataSize = SPI_DATASIZE_8BIT;
hnucleo_Spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
hnucleo_Spi.Init.NSS = SPI_NSS_SOFT;
hnucleo_Spi.Init.TIMode = SPI_TIMODE_DISABLED;
hnucleo_Spi.Init.Mode = SPI_MODE_MASTER;
SPIx_MspInit();
HAL_SPI_Init(&hnucleo_Spi);
}
}
/**
* @brief SPI Read 4 bytes from device
* @retval Read data
*/
static uint32_t SPIx_Read(void)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t readvalue = 0;
uint32_t writevalue = 0xFFFFFFFF;
status = HAL_SPI_TransmitReceive(&hnucleo_Spi, (uint8_t*) &writevalue, (uint8_t*) &readvalue, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
return readvalue;
}
/**
* @brief SPI Write a byte to device
* @param Value: value to be written
* @retval None
*/
static void SPIx_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Transmit(&hnucleo_Spi, (uint8_t*) &Value, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI error treatment function
* @retval None
*/
static void SPIx_Error (void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&hnucleo_Spi);
/* Re-Initiaize the SPI communication BUS */
SPIx_Init();
}
/******************************************************************************
LINK OPERATIONS
*******************************************************************************/
/********************************* LINK SD ************************************/
/**
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* data transfer).
* @retval None
*/
void SD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
uint8_t counter = 0;
/* SD_CS_GPIO Periph clock enable */
SD_CS_GPIO_CLK_ENABLE();
/* Configure SD_CS_PIN pin: SD Card CS pin */
gpioinitstruct.Pin = SD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_PULLUP;
gpioinitstruct.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
/*------------Put SD in SPI mode--------------*/
/* SD SPI Config */
SPIx_Init();
/* SD chip select high */
SD_CS_HIGH();
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
for (counter = 0; counter <= 9; counter++)
{
/* Send dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/**
* @brief Writes a byte on the SD.
* @param Data: byte to send.
* @retval None
*/
void SD_IO_WriteByte(uint8_t Data)
{
/* Send the byte */
SPIx_Write(Data);
}
/**
* @brief Reads a byte from the SD.
* @retval The received byte.
*/
uint8_t SD_IO_ReadByte(void)
{
uint8_t data = 0;
/* Get the received data */
data = SPIx_Read();
/* Return the shifted data */
return data;
}
/**
* @brief Sends 5 bytes command to the SD card and get response
* @param Cmd: The user expected command to send to SD card.
* @param Arg: The command argument.
* @param Crc: The CRC.
* @param Response: Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WriteCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Response)
{
uint32_t counter = 0x00;
uint8_t frame[6] = {0};
/* Prepare Frame to send */
frame[0] = (Cmd | 0x40); /* Construct byte 1 */
frame[1] = (uint8_t)(Arg >> 24); /* Construct byte 2 */
frame[2] = (uint8_t)(Arg >> 16); /* Construct byte 3 */
frame[3] = (uint8_t)(Arg >> 8); /* Construct byte 4 */
frame[4] = (uint8_t)(Arg); /* Construct byte 5 */
frame[5] = (Crc); /* Construct byte 6 */
/* SD chip select low */
SD_CS_LOW();
/* Send Frame */
for (counter = 0; counter < 6; counter++)
{
SD_IO_WriteByte(frame[counter]); /* Send the Cmd bytes */
}
if(Response != SD_NO_RESPONSE_EXPECTED)
{
return SD_IO_WaitResponse(Response);
}
return HAL_OK;
}
/**
* @brief Waits response from the SD card
* @param Response: Expected response from the SD card
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef SD_IO_WaitResponse(uint8_t Response)
{
uint32_t timeout = 0xFFFF;
/* Check if response is got or a timeout is happen */
while ((SD_IO_ReadByte() != Response) && timeout)
{
timeout--;
}
if (timeout == 0)
{
/* After time out */
return HAL_TIMEOUT;
}
else
{
/* Right response got */
return HAL_OK;
}
}
/**
* @brief Sends dummy byte with CS High
* @retval None
*/
void SD_IO_WriteDummy(void)
{
/* SD chip select high */
SD_CS_HIGH();
/* Send Dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
/********************************* LINK LCD ***********************************/
/**
* @brief Initializes the LCD
* @retval None
*/
void LCD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* LCD_CS_GPIO and LCD_DC_GPIO Periph clock enable */
LCD_CS_GPIO_CLK_ENABLE();
LCD_DC_GPIO_CLK_ENABLE();
/* Configure LCD_CS_PIN pin: LCD Card CS pin */
gpioinitstruct.Pin = LCD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
/* Configure LCD_DC_PIN pin: LCD Card DC pin */
gpioinitstruct.Pin = LCD_DC_PIN;
HAL_GPIO_Init(LCD_DC_GPIO_PORT, &gpioinitstruct);
/* LCD chip select high */
LCD_CS_HIGH();
/* LCD SPI Config */
SPIx_Init();
}
/**
* @brief Writes command to select the LCD register.
* @param LCDReg: Address of the selected register.
* @retval None
*/
void LCD_IO_WriteReg(uint8_t LCDReg)
{
/* Reset LCD control line CS */
LCD_CS_LOW();
/* Set LCD data/command line DC to Low */
LCD_DC_LOW();
/* Send Command */
SPIx_Write(LCDReg);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
* @retval None
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter = 0;
/* Reset LCD control line CS */
LCD_CS_LOW();
/* Set LCD data/command line DC to High */
LCD_DC_HIGH();
if (Size == 1)
{
/* Only 1 byte to be sent to LCD - general interface can be used */
/* Send Data */
SPIx_Write(*pData);
}
else
{
/* Several data should be sent in a raw */
/* Direct SPI accesses for optimization */
for (counter = Size; counter != 0; counter--)
{
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
/* Need to invert bytes for LCD*/
*((__IO uint8_t*)&hnucleo_Spi.Instance->DR) = *(pData+1);
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
*((__IO uint8_t*)&hnucleo_Spi.Instance->DR) = *pData;
counter--;
pData += 2;
}
/* Wait until the bus is ready before releasing Chip select */
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_BSY) != RESET)
{
}
}
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void LCD_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
/******************************* LINK JOYSTICK ********************************/
/**
* @brief Initializes ADC MSP.
* @retval None
*/
static void ADCx_MspInit(ADC_HandleTypeDef *hadc)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
NUCLEO_ADCx_GPIO_CLK_ENABLE();
/* Configure ADC1 Channel8 as analog input */
gpioinitstruct.Pin = NUCLEO_ADCx_GPIO_PIN ;
gpioinitstruct.Mode = GPIO_MODE_ANALOG;
gpioinitstruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(NUCLEO_ADCx_GPIO_PORT, &gpioinitstruct);
/*** Configure the ADC peripheral ***/
/* Enable ADC clock */
NUCLEO_ADCx_CLK_ENABLE();
}
/**
* @brief Initializes ADC HAL.
* @retval None
*/
static void ADCx_Init(void)
{
if(HAL_ADC_GetState(&hnucleo_Adc) == HAL_ADC_STATE_RESET)
{
/* ADC Config */
hnucleo_Adc.Instance = NUCLEO_ADCx;
hnucleo_Adc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; /* (must not exceed 16MHz) */
hnucleo_Adc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
hnucleo_Adc.Init.LowPowerAutoWait = ADC_AUTOWAIT_UNTIL_DATA_READ;
hnucleo_Adc.Init.Resolution = ADC_RESOLUTION12b;
hnucleo_Adc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hnucleo_Adc.Init.ContinuousConvMode = DISABLE;
hnucleo_Adc.Init.ScanConvMode = DISABLE;
hnucleo_Adc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hnucleo_Adc.Init.EOCSelection = EOC_SINGLE_CONV;
hnucleo_Adc.Init.DMAContinuousRequests = DISABLE;
ADCx_MspInit(&hnucleo_Adc);
HAL_ADC_Init(&hnucleo_Adc);
}
}
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/