6b433aede1
This patch adds -ffunction-sections and -fdata-sections to the 'release' CFLAGS so each function and data is place into its own section in the output file. It also adds --gc-section to the 'release' LDFLAGS so the linker removes the sections which are not referenced. This patch also adds -ffunction-sections and -fdata-sections options to CFLAGS from build_newlib.sh. This increases newlib static libraries size, however, the Contiki image shrinks even more since --gc-section removes "dead code" from newlib. As a practical effect, all unused function and data (as well as sections such as .eh_frame) are striped out from the final elf binary. This shrinks our release binary drastically. Finally, to prevent --gc-section from removing .multiboot section, this patch adds KEEP(*(.multiboot)) to quarkX1000.ld. |
||
---|---|---|
.. | ||
bsp | ||
core/sys | ||
contiki-conf.h | ||
contiki-main.c | ||
Makefile.customrules-galileo | ||
Makefile.galileo | ||
newlib-syscalls.c | ||
README.md |
Intel Galileo Board
This README file contains general information about the Intel Galileo board support. In the following lines you will find information about supported features as well as instructions on how to build, run and debug applications for this platform. The instructions were only test in Linux environment.
Requirements
In order to build and debug the following packages must be installed in your system:
- gcc
- gdb
- openocd
Moreover, in order to debug via JTAG or serial console, you will some extra devices as described in [1] and [2].
Features
This section presents the features currently supported (e.g. device drivers and Contiki APIs) by the Galileo port.
Device drivers:
- Programmable Interrupt Controller (PIC)
- Programmable Intergal Timer (PIT)
- Real-Time Clock (RTC)
- UART
Contiki APIs:
- Clock module
- Timer, Stimer, Etimer, Ctimer, and Rtimer libraries
Standard APIs:
- Stdio library (stdout and stderr only). Console output through UART 1 device (connected to Galileo Gen2 FTDI header)
Building
To build applications for this platform you should first build newlib (in case it wasn't already built). To build newlib you can run the following command:
$ ./platform/galileo/bsp/libc/build_newlib.sh
Once newlib is built, you are ready to build applications. By default, the following steps will use gcc as the C compiler and to invoke the linker. To use LLVM clang instead, change the values for both the CC and LD variables in cpu/x86/Makefile.x86_common to 'clang'.
To build applications for the Galileo platform you should set the TARGET variable to 'galileo'. For instance, building the hello-world application should look like this:
$ cd examples/hello-world/ && make TARGET=galileo
This will generate the 'hello-world.galileo' file which is a multiboot- compliant [3] ELF image. This image contains debugging information and it should be used in your daily development.
You can also build a "Release" image by setting the BUILD_RELEASE variable to
- This will generate a Contiki stripped-image optimized for size.
$ cd examples/hello-world/ && make TARGET=galileo BUILD_RELEASE=1
Running
In order to boot the Contiki image, you will need a multiboot-compliant bootloader. In the bsp directory, we provide a helper script which builds the Grub bootloader with multiboot support. To build the bootloader, just run the following command:
$ platform/galileo/bsp/grub/build_grub.sh
Once Grub is built, we have three main steps to run Contiki applications: prepare SDcard, connect to console, and boot image. Below follows detailed instructions.
Prepare SDcard
Mount the sdcard in directory /mnt/sdcard.
Copy Contiki binary image to sdcard
$ cp examples/hello-world/hello-world.galileo /mnt/sdcard
Copy grub binary to sdcard
$ cp platform/galileo/bsp/grub/bin/grub.efi /mnt/sdcard
Connect to the console output
Connect the serial cable to your computer as shown in [2].
Choose a terminal emulator such as PuTTY. Make sure you use the SCO keyboard mode (on PuTTY that option is at Terminal -> Keyboard, on the left menu). Connect to the appropriate serial port using a baud rate of 115200.
Boot Contiki Image
Turn on your board. After a few seconds you should see the following text in the screen:
Press [Enter] to directly boot.
Press [F7] to show boot menu options.
Press and select the option "UEFI Internal Shell" within the menu. Once you have a shell, run the following commands to run grub application:
$ fs0:
$ grub.efi
You'll reach the grub shell. Now run the following commands to boot Contiki image:
$ multiboot /hello-world.galileo
$ boot
This should boot the Contiki image, resulting in the following messages being sent to the serial console:
Starting Contiki
Hello World
Debugging
This section describes how to debug Contiki via JTAG. The following instructions consider you have the devices: Flyswatter2 and ARM-JTAG-20-10 adapter (see [1]).
Attach the Flyswatter2 to your host computer with an USB cable. Connect the Flyswatter2 and ARM-JTAG-20-10 adapter using the 20-pins head. Connect the ARM-JTAG-20-10 adapter to Galileo Gen2 JTAG port using the 10-pins head.
Once everything is connected, run Contiki as described in "Running" section, but right after loading Contiki image (multiboot command), run the following command:
$ make TARGET=galileo debug
The 'debug' rule will run OpenOCD and gdb with the right parameters. OpenOCD will run in background and its output will be redirected to a log file in the application's path called LOG_OPENOCD. Once gdb client is detached, OpenOCD is terminated.
If you use a gdb front-end, you can define the "GDB" environment variable and your gdb front-end will be used instead of default gdb. For instance, if you want to use cgdb front-end, just run the command:
$ make BOARD=galileo debug GDB=cgdb
References
[1] https://communities.intel.com/message/211778
[2] http://www.intel.com/support/galileo/sb/CS-035124.htm
[3] https://www.gnu.org/software/grub/manual/multiboot/multiboot.html