284 lines
8.1 KiB
C
284 lines
8.1 KiB
C
#define GPIO_FUNC_SEL0 0x80000018 /* GPIO 15 - 0; 2 bit blocks */
|
|
|
|
#define BASE_UART1 0x80005000
|
|
#define UART1_CON 0x80005000
|
|
#define UART1_STAT 0x80005004
|
|
#define UART1_DATA 0x80005008
|
|
#define UR1CON 0x8000500c
|
|
#define UT1CON 0x80005010
|
|
#define UART1_CTS 0x80005014
|
|
#define UART1_BR 0x80005018
|
|
|
|
#include "maca.h"
|
|
#include "embedded_types.h"
|
|
|
|
#define reg(x) (*(volatile uint32_t *)(x))
|
|
|
|
#define DELAY 400000
|
|
#define DATA 0x00401000;
|
|
|
|
#define NL "\033[K\r\n"
|
|
|
|
void putc(uint8_t c);
|
|
void puts(uint8_t *s);
|
|
void put_hex(uint8_t x);
|
|
void put_hex16(uint16_t x);
|
|
void put_hex32(uint32_t x);
|
|
|
|
const uint8_t hex[16]={'0','1','2','3','4','5','6','7',
|
|
'8','9','a','b','c','d','e','f'};
|
|
|
|
void magic(void) {
|
|
#define X 0x80009a000
|
|
#define Y 0x80009a008
|
|
#define VAL 0x0000f7df
|
|
volatile uint32_t x,y;
|
|
x = reg(X); /* get X */
|
|
x &= 0xfffeffff; /* clear bit 16 */
|
|
reg(X) = x; /* put it back */
|
|
y = reg(Y); /* get Y */
|
|
y |= VAL; /* or with the VAL */
|
|
x = reg(X); /* get X again */
|
|
x |= 16; /* or with 16 */
|
|
reg(X) = x; /* put X back */
|
|
reg(Y) = y; /* put Y back */
|
|
}
|
|
|
|
uint32_t ackBox[10];
|
|
|
|
#define command_xcvr_rx() \
|
|
do { \
|
|
maca_txlen = (uint32_t)1<<16; \
|
|
maca_dmatx = (uint32_t)&ackBox; \
|
|
maca_dmarx = DATA; \
|
|
maca_tmren = (maca_cpl_clk | maca_soft_clk); \
|
|
maca_control = (control_prm | control_asap | control_seq_rx); \
|
|
}while(FALSE)
|
|
|
|
|
|
void dump_regs(uint32_t base, uint32_t len) {
|
|
volatile uint32_t i;
|
|
|
|
puts("base +0 +4 +8 +c +10 +14 +18 +1c \n\r");
|
|
for (i = 0; i < len; i ++) {
|
|
if ((i & 7) == 0) {
|
|
put_hex16(4 * i);
|
|
}
|
|
puts(" ");
|
|
put_hex32(reg(base+(4*i)));
|
|
if ((i & 7) == 7)
|
|
puts(NL);
|
|
}
|
|
puts(NL);
|
|
}
|
|
|
|
__attribute__ ((section ("startup")))
|
|
void main(void) {
|
|
uint8_t c;
|
|
volatile uint32_t i;
|
|
uint32_t tmp;
|
|
volatile uint32_t *data;
|
|
uint16_t status;
|
|
|
|
/* Restore UART regs. to default */
|
|
/* in case there is still bootloader state leftover */
|
|
|
|
reg(UART1_CON) = 0x0000c800; /* mask interrupts, 16 bit sample --- helps explain the baud rate */
|
|
|
|
/* INC = 767; MOD = 9999 works: 115200 @ 24 MHz 16 bit sample */
|
|
#define INC 767
|
|
#define MOD 9999
|
|
reg(UART1_BR) = INC<<16 | MOD;
|
|
|
|
/* see Section 11.5.1.2 Alternate Modes */
|
|
/* you must enable the peripheral first BEFORE setting the function in GPIO_FUNC_SEL */
|
|
/* From the datasheet: "The peripheral function will control operation of the pad IF */
|
|
/* THE PERIPHERAL IS ENABLED. */
|
|
reg(UART1_CON) = 0x00000003; /* enable receive and transmit */
|
|
reg(GPIO_FUNC_SEL0) = ( (0x01 << (14*2)) | (0x01 << (15*2)) ); /* set GPIO15-14 to UART (UART1 TX and RX)*/
|
|
|
|
/* turn on the voltage regulators for the radio */
|
|
/* you clod! */
|
|
for(i=0; i<DELAY; i++) { continue; }
|
|
reg(0x80003048) = 0x00000ff8;
|
|
/* use the 24MHz clock for the modem */
|
|
reg(0x80009000) = 0x80050100;
|
|
|
|
reg(MACA_RESET) = 0x3; /* reset, turn on the clock */
|
|
for(i=0; i<DELAY; i++) { continue; }
|
|
|
|
reg(MACA_RESET) = 0x2; /* unreset, turn on the clock */
|
|
for(i=0; i<DELAY; i++) { continue; }
|
|
|
|
reset_maca();
|
|
init_phy();
|
|
|
|
/* some kind of sequence in init phy from MACPHY.a dissassmbly */
|
|
// magic();
|
|
|
|
reg(MACA_CONTROL) = SMAC_MACA_CNTL_INIT_STATE;
|
|
for(i=0; i<DELAY; i++) { continue; }
|
|
|
|
data = (void *)DATA;
|
|
data[0] = 0xdeadbeef;
|
|
reg(MACA_DMARX) = DATA; /* put data somewhere */
|
|
// reg(MACA_PREAMBLE) = 0xface0fff;
|
|
reg(MACA_PREAMBLE) = 0;
|
|
|
|
puts("maca_base\n\r");
|
|
dump_regs(MACA_BASE, 96);
|
|
puts("modem write base\n\r");
|
|
dump_regs(0x80009000, 96);
|
|
puts("modem read base\n\r");
|
|
dump_regs(0x800091c0, 96);
|
|
puts("CRM\n\r");
|
|
dump_regs(0x80003000, 96);
|
|
puts("reserved modem_base\n\r");
|
|
dump_regs(0x80009200, 192);
|
|
|
|
while(1);
|
|
|
|
command_xcvr_rx();
|
|
|
|
puts("\033[H\033[2J");
|
|
while(1) {
|
|
uint32_t TsmRxSteps, LastWarmupStep, LastWarmupData, LastWarmdownStep, LastWarmdownData;
|
|
|
|
puts("\033[Hrftest-rx --- " );
|
|
puts(" maca_getrxlvl: 0x");
|
|
put_hex(reg(MACA_GETRXLVL));
|
|
puts(" data[0]: 0x");
|
|
put_hex32(data[0]);
|
|
puts(" status: 0x");
|
|
put_hex32(reg(MACA_STATUS));
|
|
puts(" random: 0x");
|
|
put_hex32(reg(MACA_RANDOM));
|
|
puts(NL);
|
|
|
|
puts("Maca_base");
|
|
puts(NL);
|
|
dump_regs(MACA_BASE,96);
|
|
|
|
puts("0x80009000");
|
|
puts(NL);
|
|
dump_regs(0x80009000,192);
|
|
|
|
/* /\* start rx sequence *\/ */
|
|
/* reg(MACA_CONTROL) = 0x00031a01; /\* abort *\/ */
|
|
/* while (((tmp = reg(MACA_STATUS)) & 15) == 14) */
|
|
/* puts("."); */
|
|
/* puts("abort status is "); put_hex32(tmp); puts(NL); */
|
|
/* puts("1 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
/* puts("2 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
/* puts("3 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
|
|
|
|
/* read TSM_RX_STEPS */
|
|
TsmRxSteps = (*((volatile uint32_t *)(0x80009204)));
|
|
|
|
puts("TsmRxSteps: ");
|
|
put_hex32(TsmRxSteps);
|
|
puts(NL);
|
|
|
|
/* isolate the RX_WU_STEPS */
|
|
/* shift left to align with 32-bit addressing */
|
|
LastWarmupStep = (TsmRxSteps & 0x1f) << 2;
|
|
/* Read "current" TSM step and save this value for later */
|
|
LastWarmupData = (*((volatile uint32_t *)(0x80009300 + LastWarmupStep)));
|
|
|
|
puts("LastWarmupData: ");
|
|
put_hex32(LastWarmupData);
|
|
puts(NL);
|
|
|
|
/* isolate the RX_WD_STEPS */
|
|
/* right-shift bits down to bit 0 position */
|
|
/* left-shift to align with 32-bit addressing */
|
|
LastWarmdownStep = ((TsmRxSteps & 0x1f00) >> 8) << 2;
|
|
/* write "last warmdown data" to current TSM step to shutdown rx */
|
|
LastWarmdownData = (*((volatile uint32_t *)(0x80009300 + LastWarmdownStep)));
|
|
|
|
puts("LastWarmdownData: ");
|
|
put_hex32(LastWarmdownData);
|
|
puts(NL);
|
|
|
|
|
|
status = reg(MACA_STATUS) & 0x0000ffff;
|
|
switch(status)
|
|
{
|
|
case(cc_aborted):
|
|
{
|
|
puts("aborted\n\r");
|
|
ResumeMACASync();
|
|
break;
|
|
|
|
}
|
|
case(cc_not_completed):
|
|
{
|
|
puts("not completed\n\r");
|
|
ResumeMACASync();
|
|
break;
|
|
|
|
}
|
|
case(cc_success):
|
|
{
|
|
puts("success\n\r");
|
|
break;
|
|
|
|
}
|
|
default:
|
|
{
|
|
puts("status: ");
|
|
put_hex16(status);
|
|
}
|
|
}
|
|
|
|
/* reg(MACA_CONTROL) = 0x00031a04; /\* receive *\/ */
|
|
/* while (((tmp = reg(MACA_STATUS)) & 15) == 14) */
|
|
/* puts("."); */
|
|
/* puts("complete status is "); put_hex32(tmp); puts(NL); */
|
|
/* puts("1 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
/* puts("2 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
/* puts("3 status is "); put_hex32(reg(MACA_STATUS)); puts(NL); */
|
|
|
|
/* puts(NL); */
|
|
/* for(i=0; i<DELAY; i++) { continue; } */
|
|
/* for(i=0; i<DELAY; i++) { continue; } */
|
|
/* for(i=0; i<DELAY; i++) { continue; } */
|
|
/* for(i=0; i<DELAY; i++) { continue; } */
|
|
/* for(i=0; i<DELAY; i++) { continue; } */
|
|
|
|
|
|
};
|
|
}
|
|
|
|
void putc(uint8_t c) {
|
|
while(reg(UT1CON)==31); /* wait for there to be room in the buffer */
|
|
reg(UART1_DATA) = c;
|
|
}
|
|
|
|
void puts(uint8_t *s) {
|
|
while(s && *s!=0) {
|
|
putc(*s++);
|
|
}
|
|
}
|
|
|
|
void put_hex(uint8_t x)
|
|
{
|
|
putc(hex[x >> 4]);
|
|
putc(hex[x & 15]);
|
|
}
|
|
|
|
void put_hex16(uint16_t x)
|
|
{
|
|
put_hex((x >> 8) & 0xFF);
|
|
put_hex((x) & 0xFF);
|
|
}
|
|
|
|
void put_hex32(uint32_t x)
|
|
{
|
|
put_hex((x >> 24) & 0xFF);
|
|
put_hex((x >> 16) & 0xFF);
|
|
put_hex((x >> 8) & 0xFF);
|
|
put_hex((x) & 0xFF);
|
|
}
|