osd-contiki/platform/zoul/dev/bmpx8x.c
2016-01-22 16:11:49 +01:00

360 lines
10 KiB
C

/*
* Copyright (c) 2015, Zolertia - http://www.zolertia.com
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup zoul-bmpx8x-sensor
* @{
*
* BMP085/BMP180 driver implementation
*
* \file
* Driver for the external BMP085/BMP180 atmospheric pressure sensor
*
* \author
* Antonio Lignan <alinan@zolertia.com>
*/
/*---------------------------------------------------------------------------*/
#include "contiki.h"
#include "dev/i2c.h"
#include "dev/gpio.h"
#include "dev/zoul-sensors.h"
#include "lib/sensors.h"
#include "bmpx8x.h"
/*---------------------------------------------------------------------------*/
#define DEBUG 0
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
static uint8_t enabled = 0;
/*---------------------------------------------------------------------------*/
typedef struct {
int16_t ac1;
int16_t ac2;
int16_t ac3;
uint16_t ac4;
uint16_t ac5;
uint16_t ac6;
int16_t b1;
int16_t b2;
int16_t mb;
int16_t mc;
int16_t md;
} bmpx8x_calibration_values;
typedef struct {
uint8_t oversampling_mode;
int32_t b5;
bmpx8x_calibration_values calib;
} bmpx8x_config;
static bmpx8x_config bmpx8x_values;
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_reg(uint8_t reg, uint8_t *buf, uint8_t num)
{
if((buf == NULL) || (num <= 0)) {
PRINTF("BMPx8x: invalid read values\n");
return BMPx8x_ERROR;
}
i2c_master_enable();
if(i2c_single_send(BMPx8x_ADDR, reg) == I2C_MASTER_ERR_NONE) {
while(i2c_master_busy());
if(i2c_burst_receive(BMPx8x_ADDR, buf, num) == I2C_MASTER_ERR_NONE) {
return BMPx8x_SUCCESS;
}
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_write_reg(uint8_t *buf, uint8_t num)
{
if((buf == NULL) || (num <= 0)) {
PRINTF("BMPx8x: invalid write values\n");
return BMPx8x_ERROR;
}
i2c_master_enable();
if(i2c_burst_send(BMPx8x_ADDR, buf, num) == I2C_MASTER_ERR_NONE) {
return BMPx8x_SUCCESS;
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_calib(void)
{
uint8_t buf[BMPx8x_CALIB_TABLE_SIZE];
if(bmpx8x_read_reg(BMPx8x_AC1_CALIB, buf,
BMPx8x_CALIB_TABLE_SIZE) == BMPx8x_SUCCESS) {
/* MSB first */
bmpx8x_values.calib.ac1 = ((buf[0] << 8) + buf[1]);
bmpx8x_values.calib.ac2 = ((buf[2] << 8) + buf[3]);
bmpx8x_values.calib.ac3 = ((buf[4] << 8) + buf[5]);
bmpx8x_values.calib.ac4 = ((buf[6] << 8) + buf[7]);
bmpx8x_values.calib.ac5 = ((buf[8] << 8) + buf[9]);
bmpx8x_values.calib.ac6 = ((buf[10] << 8) + buf[11]);
bmpx8x_values.calib.b1 = ((buf[12] << 8) + buf[13]);
bmpx8x_values.calib.b2 = ((buf[14] << 8) + buf[15]);
bmpx8x_values.calib.mb = ((buf[16] << 8) + buf[17]);
bmpx8x_values.calib.mc = ((buf[18] << 8) + buf[19]);
bmpx8x_values.calib.md = ((buf[20] << 8) + buf[21]);
return BMPx8x_SUCCESS;
}
PRINTF("BMPx8x: failed to read calibration\n");
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_uncompensated_pressure(int32_t *pressure)
{
uint8_t buf[3];
uint16_t delay;
int32_t upres;
buf[0] = BMPx8x_CTRL_REG;
switch(bmpx8x_values.oversampling_mode) {
case BMPx8x_MODE_ULTRA_LOW_POWER:
buf[1] = BMPx8x_CTRL_REG_PRESS_4_5MS;
delay = BMPx8x_DELAY_4_5MS;
break;
case BMPx8x_MODE_STANDARD:
buf[1] = BMPx8x_CTRL_REG_PRESS_7_5MS;
delay = BMPx8x_DELAY_7_5MS;
break;
case BMPx8x_MODE_HIGH_RES:
buf[1] = BMPx8x_CTRL_REG_PRESS_13_5MS;
delay = BMPx8x_DELAY_13_5MS;
break;
case BMPx8x_MODE_ULTRA_HIGH_RES:
buf[1] = BMPx8x_CTRL_REG_PRESS_25_5MS;
delay = BMPx8x_DELAY_25_5MS;
break;
default:
return BMPx8x_ERROR;
}
if(bmpx8x_write_reg(buf, 2) == BMPx8x_SUCCESS) {
clock_delay_usec(delay);
if(bmpx8x_read_reg(BMPx8x_DATA_MSB, buf, 3) == BMPx8x_SUCCESS) {
upres = (buf[0] << 16) + (buf[1] << 8) + buf[2];
*pressure = (upres >> (8 - bmpx8x_values.oversampling_mode));
return BMPx8x_SUCCESS;
}
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_uncompensated_temperature(int32_t *temp)
{
uint8_t buf[2];
buf[0] = BMPx8x_CTRL_REG;
buf[1] = BMPx8x_CTRL_REG_TEMP;
if(bmpx8x_write_reg(buf, 2) == BMPx8x_SUCCESS) {
clock_delay_usec(BMPx8x_DELAY_4_5MS);
if(bmpx8x_read_reg(BMPx8x_DATA_MSB, buf, 2) == BMPx8x_SUCCESS) {
*temp = (int32_t)((buf[0] << 8) + buf[1]);
return BMPx8x_SUCCESS;
}
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_temperature(int16_t *temp)
{
int32_t ut = 0;
int32_t x1, x2;
if(bmpx8x_read_uncompensated_temperature(&ut) == BMPx8x_ERROR) {
return BMPx8x_ERROR;
}
x1 = ((int32_t)ut - (int32_t)bmpx8x_values.calib.ac6)
* (int32_t)bmpx8x_values.calib.ac5 >> 15;
x2 = ((int32_t)bmpx8x_values.calib.mc << 11) / (x1 + bmpx8x_values.calib.md);
bmpx8x_values.b5 = x1 + x2;
*temp = (int16_t)((bmpx8x_values.b5 + 8) >> 4);
return BMPx8x_SUCCESS;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_pressure(int32_t *pressure)
{
int32_t ut = 0;
int32_t up = 0;
int32_t x1, x2, b6, x3, b3, p;
uint32_t b4, b7;
if(bmpx8x_read_uncompensated_pressure(&up) == BMPx8x_ERROR) {
return BMPx8x_ERROR;
}
if(bmpx8x_read_uncompensated_temperature(&ut) == BMPx8x_ERROR) {
return BMPx8x_ERROR;
}
b6 = bmpx8x_values.b5 - 4000;
x1 = (bmpx8x_values.calib.b2 * (b6 * b6 >> 12)) >> 11;
x2 = bmpx8x_values.calib.ac2 * b6 >> 11;
x3 = x1 + x2;
b3 = ((((int32_t)bmpx8x_values.calib.ac1) * 4 + x3) + 2) >> 2;
x1 = (bmpx8x_values.calib.ac3 * b6) >> 13;
x2 = (bmpx8x_values.calib.b1 * ((b6 * b6) >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (bmpx8x_values.calib.ac4 * ((uint32_t)(x3 + 32768))) >> 15;
b7 = ((uint32_t)up - b3) * 50000;
if(b7 < 0x80000000) {
p = (b7 << 1) / b4;
} else {
p = (b7 / b4) << 1;
}
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
*pressure = (p + ((x1 + x2 + 3791) >> 4));
*pressure /= 10;
return BMPx8x_SUCCESS;
}
/*---------------------------------------------------------------------------*/
static int
configure(int type, int value)
{
if((type != BMPx8x_ACTIVE) && (type != BMPx8x_OVERSAMPLING)) {
PRINTF("BMPx8x: invalid start value\n");
return BMPx8x_ERROR;
}
if(type == BMPx8x_ACTIVE) {
if(value) {
i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN,
I2C_SCL_NORMAL_BUS_SPEED);
/* Read the calibration values */
if(bmpx8x_read_calib() != BMPx8x_ERROR) {
PRINTF("BMPx8x: sensor started\n");
enabled = 1;
bmpx8x_values.oversampling_mode = BMPx8x_MODE_ULTRA_LOW_POWER;
return BMPx8x_SUCCESS;
}
PRINTF("BMPx8x: failed to enable\n");
return BMPx8x_ERROR;
} else {
enabled = 0;
return BMPx8x_SUCCESS;
}
} else if(type == BMPx8x_OVERSAMPLING) {
if((value < BMPx8x_MODE_ULTRA_LOW_POWER) ||
(value > BMPx8x_MODE_ULTRA_HIGH_RES)) {
PRINTF("BMPx8x: invalid oversampling value\n");
return BMPx8x_ERROR;
}
bmpx8x_values.oversampling_mode = value;
return BMPx8x_SUCCESS;
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
status(int type)
{
switch(type) {
case SENSORS_ACTIVE:
case SENSORS_READY:
return enabled;
}
return 0;
}
/*---------------------------------------------------------------------------*/
static int
bmpx8x_read_sensor(int32_t *value, uint8_t type)
{
int16_t temp = 0;
/* The temperature is required to compensate the pressure value */
if(bmpx8x_read_temperature(&temp) != BMPx8x_SUCCESS) {
return BMPx8x_ERROR;
}
switch(type) {
case BMPx8x_READ_PRESSURE:
return bmpx8x_read_pressure(value);
case BMPx8x_READ_TEMP:
*value = (int16_t) temp;
return BMPx8x_SUCCESS;
}
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
value(int type)
{
int32_t value;
if(!enabled) {
PRINTF("BMPx8x: sensor not started\n");
return BMPx8x_ERROR;
}
if((type != BMPx8x_READ_PRESSURE) && (type != BMPx8x_READ_TEMP)) {
PRINTF("BMPx8x: invalid read value\n");
return BMPx8x_ERROR;
}
if(bmpx8x_read_sensor(&value, type) == BMPx8x_SUCCESS) {
return (int)value;
}
PRINTF("BMPx8x: fail to read\n");
return BMPx8x_ERROR;
}
/*---------------------------------------------------------------------------*/
SENSORS_SENSOR(bmpx8x, BMPx8x_SENSOR, value, configure, status);
/*---------------------------------------------------------------------------*/
/** @} */