osd-contiki/cpu/stm32w108/hal/micro/cortexm3/nvm.c
Adam Dunkels a5046e83c7 Cleanup and refactoring of the STM32w port
This is a general cleanup of things like code style issues and code structure of the STM32w port to make it more like the rest of Contiki is structured.
2013-03-18 13:31:26 +01:00

403 lines
13 KiB
C

/** @file hal/micro/cortexm3/nvm.c
* @brief Cortex-M3 Non-Volatile Memory data storage system.
*
* This file implements the NVM data storage system. Refer to nvm.h for
* full documentation of how the NVM data storage system works, is configured,
* and is accessed.
*
* <!--(C) COPYRIGHT 2010 STMicroelectronics. All rights reserved. -->
*/
#include PLATFORM_HEADER
#include "error.h"
#ifdef NVM_RAM_EMULATION
static uint16_t calibrationData[32+2]={
0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
};
uint8_t halCommonReadFromNvm(void *data, uint32_t offset, uint16_t length)
{
halCommonMemCopy(data, ((uint8_t *) calibrationData) + offset, length);
return ST_SUCCESS;
}
uint8_t halCommonWriteToNvm(const void *data, uint32_t offset, uint16_t length)
{
halCommonMemCopy(((uint8_t *) calibrationData) + offset, data, length);
return ST_SUCCESS;
}
#else
//flash.h gives access to halInternalFlashErase and halInternalFlashWrite.
#include "hal/micro/cortexm3/flash.h"
//nvm.h includes memmap.h. These two headers define the key parameters:
// MFB_PAGE_SIZE_B
// MFB_TOP
// NVM_LEFT_PAGE
// NVM_RIGHT_PAGE
// NVM_DATA_SIZE_B
// NVM_FLASH_PAGE_COUNT
// NVM_MGMT_SIZE_B
#include "hal/micro/cortexm3/nvm.h"
//Define two variables that hold the actual NVM data storage. LEFT and RIGHT
//are not required to be continuous memory blocks so they can be define
//separately. The linker is responsible for placing these storage containers
//on flash page boundaries.
NO_STRIPPING __no_init VAR_AT_SEGMENT (const uint8_t nvmStorageLeft[NVM_DATA_SIZE_B], __NVM__);
NO_STRIPPING __no_init VAR_AT_SEGMENT (const uint8_t nvmStorageRight[NVM_DATA_SIZE_B], __NVM__);
static uint8_t determineState(void)
{
uint32_t leftMgmt = *(uint32_t *)NVM_LEFT_PAGE;
uint32_t rightMgmt = *(uint32_t *)NVM_RIGHT_PAGE;
uint8_t state=0;
if((leftMgmt==0xFFFF0000) && (rightMgmt==0xFFFFFFFF)) {
//State 1 and state 4 use identical mgmt words. The function
//determineState() is only called at the start of a NVM read
//or write. During a read, state 1 and 4 both read from the
//LEFT so there is no reason to make a distinction. During
//a write, the system will see the current page as LEFT and
//therefore be transitioning from LEFT to RIGHT so state 4 is
//correct. State 1 is only required to transition from 0 to 2.
state = 4;
} else if((leftMgmt==0xFFFF0000) && (rightMgmt==0xFF00FFFF)) {
state = 2;
} else if((leftMgmt==0xFFFF0000) && (rightMgmt==0xFF000000)) {
state = 3;
} else if((leftMgmt==0xFFFF0000) && (rightMgmt==0xFFFFFFFF)) {
state = 4;
} else if((leftMgmt==0xFFFF0000) && (rightMgmt==0xFFFFFF00)) {
state = 5;
} else if((leftMgmt==0xFF000000) && (rightMgmt==0xFFFFFF00)) {
state = 6;
} else if((leftMgmt==0xFF000000) && (rightMgmt==0xFFFF0000)) {
state = 7;
} else if((leftMgmt==0xFFFFFFFF) && (rightMgmt==0xFFFF0000)) {
state = 8;
} else if((leftMgmt==0xFFFFFF00) && (rightMgmt==0xFFFF0000)) {
state = 9;
} else if((leftMgmt==0xFFFFFF00) && (rightMgmt==0xFF000000)) {
state = 10;
} else {
//State 0 is used to indicate erased or invalid.
state = 0;
}
return state;
}
uint8_t halCommonReadFromNvm(void *data, uint32_t offset, uint16_t length)
{
uint16_t i;
uint16_t *flash;
//Remember: all flash writes are 16bits.
uint16_t *ram = (uint16_t*)data;
//The NVM data storage system cannot function if the LEFT and RIGHT
//storage are not aligned to physical flash pages.
assert((NVM_LEFT_PAGE%MFB_PAGE_SIZE_B)==0);
assert((NVM_RIGHT_PAGE%MFB_PAGE_SIZE_B)==0);
//The offset of the NVM data must be 16bit aligned.
assert((offset&0x1)==0);
//The length of the NVM data must be 16bit aligned.
assert((length&0x1)==0);
assert(offset+length<NVM_DATA_SIZE_B);
//Obtain the data from NVM storage.
switch(determineState()) {
case 1:
case 2:
case 3:
case 4:
case 9:
case 10:
flash = (uint16_t *)(NVM_LEFT_PAGE+offset);
for(i=0;i<(length/2);i++) {
ram[i] = flash[i];
}
break;
case 5:
case 6:
case 7:
case 8:
flash = (uint16_t *)(NVM_RIGHT_PAGE+offset);
for(i=0;i<(length/2);i++) {
ram[i] = flash[i];
}
break;
case 0:
default:
//Reading from NVM while the mgmt bytes are in an invalid state
//should not return any bytes actually found in flash. Instead,
//return nothing but 0xFF. This is legitimate because the next
//call to the write function will also find invalid mgmt bytes
//and trigger an erasure of NVM, after which the NVM really will
//contain just 0xFF for data (plus the new data supplied during
//the write call).
for(i=0;i<(length/2);i++) {
ram[i] = 0xFFFF;
}
//Inform the calling code. using ST_ERR_FATAL, that there were
//invalid mgmt bytes and 0xFF was forcefully returned.
return ST_ERR_FATAL;
}
return ST_SUCCESS;
}
uint16_t *halCommonGetAddressFromNvm(uint32_t offset)
{
uint16_t *flash;
//The NVM data storage system cannot function if the LEFT and RIGHT
//storage are not aligned to physical flash pages.
assert((NVM_LEFT_PAGE%MFB_PAGE_SIZE_B)==0);
assert((NVM_RIGHT_PAGE%MFB_PAGE_SIZE_B)==0);
//The offset of the NVM data must be 16bit aligned.
assert((offset&0x1)==0);
//Obtain the data from NVM storage.
switch(determineState()) {
case 1:
case 2:
case 3:
case 4:
case 9:
case 10:
flash = (uint16_t *)(NVM_LEFT_PAGE+offset);
break;
case 5:
case 6:
case 7:
case 8:
flash = (uint16_t *)(NVM_RIGHT_PAGE+offset);
break;
case 0:
default:
// Flash is in an invalid state
// Fix it with a dummy write and then return the flash page left
{
uint16_t dummy = 0xFFFF;
halCommonWriteToNvm(&dummy, 0, 2);
flash = (uint16_t *)(NVM_LEFT_PAGE+offset);
}
}
return flash;
}
static uint8_t erasePage(uint32_t page)
{
StStatus status;
uint32_t i, k;
uint32_t address;
uint8_t *flash;
//Erasing a LEFT or RIGHT page requires erasing all of the flash pages.
//Since the mgmt bytes are stored at the bottom of a page, the flash pages
//are erased from the top down ensuring that that mgmt words are the last
//data to be erased. This way, if a reset occurs while erasing, the mgmt
//words are still valid the next time determineState() is called.
for(i=NVM_FLASH_PAGE_COUNT;i>0;i--) {
address = (page+((i-1)*MFB_PAGE_SIZE_B));
flash = (uint8_t *)address;
//Scan the page to determine if it is fully erased already.
//If the flash is not erased, erase it. The purpose of scanning
//first is to save a little time if erasing is not required.
for(k=0;k<MFB_PAGE_SIZE_B;k++,flash++) {
if(*flash != 0xFF) {
status = halInternalFlashErase(MFB_PAGE_ERASE, address);
if(status != ST_SUCCESS) {
return status;
}
//Don't bother looking at the rest of this flash page and just
//move to the next.
k=MFB_PAGE_SIZE_B;
}
}
}
return ST_SUCCESS;
}
//This macro is responsible for erasing an NVM page (LEFT or RIGHT).
#define ERASE_PAGE(page) \
do { \
status = erasePage(page); \
if(status != ST_SUCCESS) { \
return status; \
} \
} while(0)
//This macro is responsible for writing the new data into the destination
//page and copying existing data from the source page to the
//destination page.
#define WRITE_DATA(destPage, srcPage, offset, length) \
do { \
/*Copy all data below the new data from the srcPage to the destPage*/ \
status = halInternalFlashWrite(destPage+NVM_MGMT_SIZE_B, \
(uint16_t *)(srcPage+NVM_MGMT_SIZE_B), \
(offset-NVM_MGMT_SIZE_B)/2); \
if(status != ST_SUCCESS) { return status; } \
/*Write the new data*/ \
status = halInternalFlashWrite(destPage+offset, \
ram, \
(length)/2); \
if(status != ST_SUCCESS) { return status; } \
/*Copy all data above the new data from the srcPage to the destPage*/ \
status = halInternalFlashWrite(destPage+offset+length, \
(uint16_t *)(srcPage+offset+length), \
(NVM_DATA_SIZE_B- \
length-offset- \
NVM_MGMT_SIZE_B)/2); \
if(status != ST_SUCCESS) { return status; } \
} while(0)
//This macro is responsible for writing 16bits of management data to
//the proper management address.
#define WRITE_MGMT_16BITS(address, data) \
do{ \
uint16_t value = data; \
status = halInternalFlashWrite((address), &value, 1); \
if(status != ST_SUCCESS) { \
return status; \
} \
} while(0)
uint8_t halCommonWriteToNvm(const void *data, uint32_t offset, uint16_t length)
{
StStatus status;
uint8_t state, exitState;
uint32_t srcPage;
uint32_t destPage;
//Remember: NVM data storage works on 16bit quantities.
uint16_t *ram = (uint16_t*)data;
//The NVM data storage system cannot function if the LEFT and RIGHT
//storage are not aligned to physical flash pages.
assert((NVM_LEFT_PAGE%MFB_PAGE_SIZE_B)==0);
assert((NVM_RIGHT_PAGE%MFB_PAGE_SIZE_B)==0);
//The offset of the NVM data must be 16bit aligned.
assert((offset&0x1)==0);
//The length of the NVM data must be 16bit aligned.
assert((length&0x1)==0);
//It is illegal to write to an offset outside of NVM storage.
assert(offset+length<NVM_DATA_SIZE_B);
state = determineState();
switch(state) {
case 1:
case 2:
case 3:
case 4:
case 9:
case 10:
srcPage = NVM_LEFT_PAGE;
destPage = NVM_RIGHT_PAGE;
exitState = 7;
break;
case 5:
case 6:
case 7:
case 8:
srcPage = NVM_RIGHT_PAGE;
destPage = NVM_LEFT_PAGE;
exitState = 3;
break;
case 0:
default:
//Invalid state. Default to writing to the LEFT page. Defaulting to
//using RIGHT as the source page is valid since the RIGHT page
//will also be erased and therefore produce 0xFF for data values.
state = 0;
srcPage = NVM_RIGHT_PAGE;
destPage = NVM_LEFT_PAGE;
exitState = 3;
break;
}
//Advance the state machine. Starting on state 3 requires state 7 to
//exit and starting on state 7 requires state 3 to exit. Starting on
//any other state requires either 3 or 7 to exit.
//NOTE: Refer to nvm.h for a description of the states and how the
// state transitions correspond to erasing, writing data, and
// writing mgmt values.
while(TRUE) {
switch(state) {
case 0:
//State 0 is the only state where the source page needs to be erased.
ERASE_PAGE(srcPage);
ERASE_PAGE(destPage);
WRITE_DATA(destPage, srcPage, offset, length);
WRITE_MGMT_16BITS(NVM_LEFT_PAGE+0, 0x0000);
state=1;
break;
case 1:
WRITE_MGMT_16BITS(NVM_RIGHT_PAGE+2, 0xFF00);
state=2;
break;
case 2:
WRITE_MGMT_16BITS(NVM_RIGHT_PAGE+0, 0x0000);
state=3;
break;
case 3:
if(exitState==3) {
return ST_SUCCESS;
}
ERASE_PAGE(destPage);
state=4;
break;
case 4:
WRITE_DATA(destPage, srcPage, offset, length);
WRITE_MGMT_16BITS(NVM_RIGHT_PAGE+0, 0xFF00);
state=5;
break;
case 5:
WRITE_MGMT_16BITS(NVM_LEFT_PAGE+2, 0xFF00);
state=6;
break;
case 6:
WRITE_MGMT_16BITS(NVM_RIGHT_PAGE+0, 0x0000);
state=7;
break;
case 7:
if(exitState==7) {
return ST_SUCCESS;
}
ERASE_PAGE(destPage);
state=8;
break;
case 8:
WRITE_DATA(destPage, srcPage, offset, length);
WRITE_MGMT_16BITS(NVM_LEFT_PAGE+0, 0xFF00);
state=9;
break;
case 9:
WRITE_MGMT_16BITS(NVM_RIGHT_PAGE+2, 0xFF00);
state=10;
break;
case 10:
WRITE_MGMT_16BITS(NVM_LEFT_PAGE+0, 0x0000);
state=3;
break;
}
}
}
#endif // NVM_RAM_EMULATION