8ae392e66f
When generating binaries, gcc will always add information of what it
calls "the exception handler framework" into its own section: .eh_frame.
This section is based on the DWARF format's call frame information (CFI) [1]
and holds information that can be useful for debuggers but also for language
constructs that relies on always having stack unwinding information (i.e. exceptions).
Such constructs, however, are pretty much useless for the C language and are
mainly just used on C++. Furthermore, this section is one of the loadable sections
of a binary, meaning it will take extra space on flash.
When .eh_frame is not present, debuggers can still get the exact same information
they need for unwinding a stack frame and for restoring registers thanks to yet
another section: .debug_frame. This section is generated by '-g' gcc option and
friends. It is actually defined by DWARF and, as opposed to .eh_frame, is not a
loadable section. In other words, it is 'strippable' while .eh_frame is not.
Since all we need is the debug information we can get from .debug_frame, we can
disable the generation of these large and unused information tables by using gcc's
'-fno-asynchronous-unwind-tables'. The .eh_frame section stays around but the code
size issue is heavily tackled. This is the same approach taken on other projects
that target small code size generation [2] [3].
Pratically speaking, on a DEBUG build of the all-timers appplication, before this
patch we had:
text data bss dec hex filename
21319 1188 12952 35459 8a83 all-timers.galileo
And now, after this patch:
text data bss dec hex filename
16347 1188 12952 30487 7717 all-timers.galileo
This means a ~5Kb reduction on the loadable text segment (.text + .rodata + .eh_frame).
The flag is applied regardless of build type, DEBUG or RELEASE, since it benefits both.
Note that when release builds apply --gc-sections, they will remove .eh_frame section entirely.
[1] http://comments.gmane.org/gmane.comp.standards.dwarf/222
[2]
|
||
---|---|---|
apps | ||
core | ||
cpu | ||
dev | ||
doc | ||
examples | ||
lib/newlib | ||
platform | ||
regression-tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.travis.yml | ||
CONTRIBUTING.md | ||
LICENSE | ||
Makefile.include | ||
README-BUILDING.md | ||
README-EXAMPLES.md | ||
README.md |
The Contiki Operating System
Contiki is an open source operating system that runs on tiny low-power microcontrollers and makes it possible to develop applications that make efficient use of the hardware while providing standardized low-power wireless communication for a range of hardware platforms.
Contiki is used in numerous commercial and non-commercial systems, such as city sound monitoring, street lights, networked electrical power meters, industrial monitoring, radiation monitoring, construction site monitoring, alarm systems, remote house monitoring, and so on.
For more information, see the Contiki website: