osd-contiki/platform/stm32nucleo-spirit1/drivers/x_nucleo_ids01ax/radio_spi.c
2015-07-24 16:30:10 +02:00

483 lines
14 KiB
C

/**
******************************************************************************
* @file radio_spi.c
* @author System Lab - NOIDA
* @version V1.0.0
* @date 15-May-2014
* @brief This file provides code for the configuration of the SPI instances.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "radio_spi.h"
/**
* @addtogroup BSP
* @{
*/
/**
* @addtogroup X-NUCLEO-IDS02Ax
* @{
*/
/**
* @defgroup RADIO_SPI_Private_TypesDefinitions RADIO_SPI Private Types Definitions
* @{
*/
/**
* @}
*/
/**
* @defgroup RADIO_SPI_Private_Defines RADIO_SPI Private Defines
* @{
*/
/**
* @}
*/
/**
* @defgroup RADIO_SPI_Private_Macros RADIO_SPI Private Macros
* @{
*/
/**
* @}
*/
/**
* @defgroup RADIO_SPI_Private_Variables RADIO_SPI Private Variables
* @{
*/
SPI_HandleTypeDef pSpiHandle;
uint32_t SpiTimeout = RADIO_SPI_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
/**
* @}
*/
/**
* @defgroup RADIO_SPI_Private_FunctionPrototypes RADIO_SPI Private Function Prototypes
* @{
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* pSpiHandle);
static void SPI_Write(uint8_t Value);
static void SPI_Error(void);
/**
* @}
*/
/**
* @defgroup RADIO_SPI_Private_Functions RADIO_SPI Private Functions
* @{
*/
/**
* @brief Initializes SPI HAL.
* @param None
* @retval None
*/
void SdkEvalSpiInit(void)
{
if (HAL_SPI_GetState(&pSpiHandle) == HAL_SPI_STATE_RESET)
{
/* SPI Config */
pSpiHandle.Instance = RADIO_SPI;
pSpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
pSpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
pSpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE;
pSpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
pSpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
pSpiHandle.Init.CRCPolynomial = 7;
pSpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
pSpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
pSpiHandle.Init.NSS = SPI_NSS_HARD_OUTPUT;
pSpiHandle.Init.TIMode = SPI_TIMODE_DISABLED;
pSpiHandle.Init.Mode = SPI_MODE_MASTER;
HAL_SPI_MspInit(&pSpiHandle);
HAL_SPI_Init(&pSpiHandle);
}
}
/**
* @brief Initializes SPI MSP.
* @param SPI_HandleTypeDef* pSpiHandle
* @retval None
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* pSpiHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if (pSpiHandle->Instance==RADIO_SPI)
{
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
RADIO_SPI_SCK_CLOCK_ENABLE();
RADIO_SPI_MISO_CLOCK_ENABLE();
RADIO_SPI_MOSI_CLOCK_ENABLE();
/**SPI1 GPIO Configuration */
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
GPIO_InitStruct.Pin = RADIO_SPI_SCK_PIN;
HAL_GPIO_Init(RADIO_SPI_SCK_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
GPIO_InitStruct.Pin = RADIO_SPI_MISO_PIN;
HAL_GPIO_Init(RADIO_SPI_MISO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RADIO_SPI_MOSI_PIN;
HAL_GPIO_Init(RADIO_SPI_MOSI_PORT, &GPIO_InitStruct);
RADIO_SPI_CS_CLOCK_ENABLE();
/* Configure SPI pin: CS */
GPIO_InitStruct.Pin = RADIO_SPI_CS_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(RADIO_SPI_CS_PORT, &GPIO_InitStruct);
RADIO_SPI_CLK_ENABLE();
}
}
/**
* @}
*/
/**
* @brief SPI Write a byte to device
* @param Value: value to be written
* @retval None
*/
static void SPI_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
while (__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
status = HAL_SPI_Transmit(&pSpiHandle, (uint8_t*) &Value, 1, SpiTimeout);
/* Check the communication status */
if (status != HAL_OK)
{
/* Execute user timeout callback */
SPI_Error();
}
}
/**
* @brief SPI error treatment function
* @param None
* @retval None
*/
static void SPI_Error(void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&pSpiHandle);
/* Re-Initiaize the SPI communication BUS */
SdkEvalSpiInit();
}
/**
* @brief Write single or multiple RF Transceivers register
* @param cRegAddress: base register's address to be write
* @param cNbBytes: number of registers and bytes to be write
* @param pcBuffer: pointer to the buffer of values have to be written into registers
* @retval StatusBytes
*/
StatusBytes SdkEvalSpiWriteRegisters(uint8_t cRegAddress, uint8_t cNbBytes, uint8_t* pcBuffer)
{
uint8_t aHeader[2] = {0};
uint16_t tmpstatus = 0x0000;
StatusBytes *pStatus=(StatusBytes *)&tmpstatus;
/* Built the aHeader bytes */
aHeader[0] = WRITE_HEADER;
aHeader[1] = cRegAddress;
SPI_ENTER_CRITICAL();
/* Puts the SPI chip select low to start the transaction */
RadioSpiCSLow();
for (volatile uint16_t Index = 0; Index < CS_TO_SCLK_DELAY; Index++);
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[0], (uint8_t *)&(tmpstatus), 1, SpiTimeout);
tmpstatus = tmpstatus << 8;
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[1], (uint8_t *)&tmpstatus, 1, SpiTimeout);
/* Writes the registers according to the number of bytes */
for (int index = 0; index < cNbBytes; index++)
{
SPI_Write(pcBuffer[index]);
}
/* To be sure to don't rise the Chip Select before the end of last sending */
while (__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
/* Puts the SPI chip select high to end the transaction */
RadioSpiCSHigh();
SPI_EXIT_CRITICAL();
return *pStatus;
}
/**
* @brief Read single or multiple SPIRIT1 register
* @param cRegAddress: base register's address to be read
* @param cNbBytes: number of registers and bytes to be read
* @param pcBuffer: pointer to the buffer of registers' values read
* @retval StatusBytes
*/
StatusBytes SdkEvalSpiReadRegisters(uint8_t cRegAddress, uint8_t cNbBytes, uint8_t* pcBuffer)
{
uint16_t tmpstatus = 0x00;
StatusBytes *pStatus = (StatusBytes *)&tmpstatus;
uint8_t aHeader[2] = {0};
uint8_t dummy = 0xFF;
/* Built the aHeader bytes */
aHeader[0] = READ_HEADER;
aHeader[1] = cRegAddress;
SPI_ENTER_CRITICAL();
/* Put the SPI chip select low to start the transaction */
RadioSpiCSLow();
for (volatile uint16_t Index = 0; Index < CS_TO_SCLK_DELAY; Index++);
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[0], (uint8_t *)&(tmpstatus), 1, SpiTimeout);
tmpstatus = tmpstatus << 8;
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[1], (uint8_t *)&tmpstatus, 1, SpiTimeout);
for (int index = 0; index < cNbBytes; index++)
{
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&dummy, (uint8_t *)&(pcBuffer)[index], 1, SpiTimeout);
}
/* To be sure to don't rise the Chip Select before the end of last sending */
while (__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
/* Put the SPI chip select high to end the transaction */
RadioSpiCSHigh();
SPI_EXIT_CRITICAL();
return *pStatus;
}
/**
* @brief Send a command
* @param cCommandCode: command code to be sent
* @retval StatusBytes
*/
StatusBytes SdkEvalSpiCommandStrobes(uint8_t cCommandCode)
{
uint8_t aHeader[2] = {0};
uint16_t tmpstatus = 0x0000;
StatusBytes *pStatus = (StatusBytes *)&tmpstatus;
/* Built the aHeader bytes */
aHeader[0] = COMMAND_HEADER;
aHeader[1] = cCommandCode;
SPI_ENTER_CRITICAL();
/* Puts the SPI chip select low to start the transaction */
RadioSpiCSLow();
for (volatile uint16_t Index = 0; Index < CS_TO_SCLK_DELAY; Index++);
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[0], (uint8_t *)&tmpstatus, 1, SpiTimeout);
tmpstatus = tmpstatus<<8;
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[1], (uint8_t *)&tmpstatus, 1, SpiTimeout);
/* To be sure to don't rise the Chip Select before the end of last sending */
while (__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
/* Puts the SPI chip select high to end the transaction */
RadioSpiCSHigh();
SPI_EXIT_CRITICAL();
return *pStatus;
}
/**
* @brief Write data into TX FIFO
* @param cNbBytes: number of bytes to be written into TX FIFO
* @param pcBuffer: pointer to data to write
* @retval StatusBytes
*/
StatusBytes SdkEvalSpiWriteFifo(uint8_t cNbBytes, uint8_t* pcBuffer)
{
uint16_t tmpstatus = 0x0000;
StatusBytes *pStatus = (StatusBytes *)&tmpstatus;
uint8_t aHeader[2] = {0};
/* Built the aHeader bytes */
aHeader[0] = WRITE_HEADER;
aHeader[1] = LINEAR_FIFO_ADDRESS;
SPI_ENTER_CRITICAL();
/* Put the SPI chip select low to start the transaction */
RadioSpiCSLow();
for (volatile uint16_t Index = 0; Index < CS_TO_SCLK_DELAY; Index++);
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[0], (uint8_t *)&tmpstatus, 1, SpiTimeout);
tmpstatus = tmpstatus<<8;
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[1], (uint8_t *)&tmpstatus, 1, SpiTimeout);
/* Writes the registers according to the number of bytes */
for (int index = 0; index < cNbBytes; index++)
{
SPI_Write(pcBuffer[index]);
}
/* To be sure to don't rise the Chip Select before the end of last sending */
while (__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
/* Put the SPI chip select high to end the transaction */
RadioSpiCSHigh();
SPI_EXIT_CRITICAL();
return *pStatus;
}
/**
* @brief Read data from RX FIFO
* @param cNbBytes: number of bytes to read from RX FIFO
* @param pcBuffer: pointer to data read from RX FIFO
* @retval StatusBytes
*/
StatusBytes SdkEvalSpiReadFifo(uint8_t cNbBytes, uint8_t* pcBuffer)
{
uint16_t tmpstatus = 0x0000;
StatusBytes *pStatus = (StatusBytes *)&tmpstatus;
uint8_t aHeader[2];
uint8_t dummy=0xFF;
/* Built the aHeader bytes */
aHeader[0]=READ_HEADER;
aHeader[1]=LINEAR_FIFO_ADDRESS;
SPI_ENTER_CRITICAL();
/* Put the SPI chip select low to start the transaction */
RadioSpiCSLow();
for (volatile uint16_t Index = 0; Index < CS_TO_SCLK_DELAY; Index++);
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[0], (uint8_t *)&tmpstatus, 1, SpiTimeout);
tmpstatus = tmpstatus<<8;
/* Write the aHeader bytes and read the SPIRIT1 status bytes */
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&aHeader[1], (uint8_t *)&tmpstatus, 1, SpiTimeout);
for (int index = 0; index < cNbBytes; index++)
{
HAL_SPI_TransmitReceive(&pSpiHandle, (uint8_t *)&dummy, (uint8_t *)&pcBuffer[index], 1, SpiTimeout);
}
/* To be sure to don't rise the Chip Select before the end of last sending */
while(__HAL_SPI_GET_FLAG(&pSpiHandle, SPI_FLAG_TXE) == RESET);
/* Put the SPI chip select high to end the transaction */
RadioSpiCSHigh();
SPI_EXIT_CRITICAL();
return *pStatus;
}
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/