osd-contiki/platform/ev-aducrf101mkxz
2014-07-23 16:21:53 -04:00
..
button-sensor.c Add button sensor support (BOOT button) 2014-07-22 21:18:16 -04:00
contiki-conf.h Add ADuCRF101 radio driver 2014-07-22 21:18:16 -04:00
contiki-main.c Implement rtimers for ADuCRF101 2014-07-22 21:18:16 -04:00
leds-arch.c Add platform LED driver 2014-07-22 21:18:16 -04:00
Makefile.ev-aducrf101mkxz Add platform LED driver 2014-07-22 21:18:16 -04:00
platform-conf.h Add platform LED driver 2014-07-22 21:18:16 -04:00
README.md Add README.md for ev-aducrf101mkxz platform 2014-07-23 16:21:53 -04:00

Building Contiki for the EV-ADuCRF101MKxZ Board

On Debian/Ubuntu Linux:

For older versions of Ubuntu (prior to 14.04), add the external package repository that provides recent versions of GCC for ARM:

sudo add-apt-repository -y ppa:terry.guo/gcc-arm-embedded
sudo apt-get update

For all systems, install the required development packages:

sudo apt-get install git make gcc-arm-none-eabi python-serial

Obtain the Contiki source code:

git clone https://github.com/contiki-os/contiki.git

Build Contiki's example-abc:

make -C contiki/examples/rime \
    TARGET=ev-aducrf101mkxz \
    example-abc.ev-aducrf101mkxz.hex

The default radio frequency can optionally be specified on the command-line as follows. A clean rebuild may be needed when changing it:

make -C contiki/examples/rime \
    TARGET=ev-aducrf101mkxz \
    RF_CHANNEL=915000000 \
    clean \
    example-abc.ev-aducrf101mkxz.hex

The code can be flashed to the eval board and tested using adi-cm3sd. Obtain adi-cm3sd:

git clone https://github.com/jimparis/adi-cm3sd.git

Connect the evaluation board using its J-Link board, or any other serial adapter. Flash example-adc and open a terminal by running:

adi-cm3sd/cm3sd.py -a contiki/examples/rime/example-abc.ev-aducrf101mkxz.hex \
    /dev/serial/by-id/usb-SEGGER_J-Link_000541011111-if00

replacing /dev/serial/by-id/usb-SEGGER_J-Link_000541011111-if00 with the path to the correct serial device. Flash the same code on a second evaluation board to see them communicate.

IPv6 Example

Border Router

First, build and run the IPv6 border-router example:

make -C contiki/examples/ipv6/rpl-border-router \
    TARGET=ev-aducrf101mkxz \
    SERIAL_ID='"00001234"' \
    border-router.ev-aducrf101mkxz.hex

adi-cm3sd/cm3sd.py -a contiki/examples/ipv6/rpl-border-router/border-router.ev-aducrf101mkxz.hex \
    /dev/serial/by-id/usb-SEGGER_J-Link_000541011111-if00

After flashing, close the terminal with CTRL-C, then build and run the SLIP tunnel on the host machine:

make -C contiki/tools tunslip6

sudo contiki/tools/tunslip6 \
    -s /dev/serial/by-id/usb-SEGGER_J-Link_000541011111-if00 \
    -B 115200 -v3 aaaa::1/64

Press the RESET button on the eval board, then open the border router home page at: http://[aaaa::3230:3030:3132:3334]/

Web Server

Then, build and flash the IPv6 webserver6 example on another eval board. The different SERIAL_ID ensures that the webserver uses a link-local IP address that is different from that of the border router:

make -C contiki/examples/webserver-ipv6 \
    TARGET=ev-aducrf101mkxz \
    SERIAL_ID='"00005678"' \
    webserver6.ev-aducrf101mkxz.hex

adi-cm3sd/cm3sd.py -a contiki/examples/webserver-ipv6/webserver6.ev-aducrf101mkxz.hex \
    /dev/serial/by-id/usb-SEGGER_J-Link_000541022222-if00

Open the web server's home page at: http://[aaaa::3230:3030:3536:3738]/