osd-contiki/cpu/x86/drivers/quarkX1000/i2c.c
Michael LeMay 58874ea25d x86, galileo: Refactor I2C and GPIO initialization
This patch revises the I2C and GPIO initialization code to always be
run during platform boot rather than within each process that requires
it.

This patch also revises the gpio-output example to use a pin that is
set as an output by the default pinmux configuration.  Previously, it
used a pin that was set as an output by the pinmux configuration that
is in effect when the OS does not change the pinmux configuration.
2016-02-16 21:19:44 -08:00

529 lines
14 KiB
C

/*
* Copyright (C) 2015-2016, Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "contiki.h"
#include "i2c.h"
#include "i2c-registers.h"
#include "shared-isr.h"
#define I2C_CLOCK_SPEED 25 /* kHz */
#define I2C_FIFO_DEPTH 16
#define I2C_STD_HCNT (I2C_CLOCK_SPEED * 4)
#define I2C_STD_LCNT (I2C_CLOCK_SPEED * 5)
#define I2C_FS_HCNT (I2C_CLOCK_SPEED)
#define I2C_FS_LCNT (I2C_CLOCK_SPEED)
#define I2C_FS_SPKLEN_LCNT_OFFSET 8
#define I2C_FS_SPKLEN_HCNT_OFFSET 6
#define I2C_POLLING_TIMEOUT (CLOCK_SECOND / 10)
#define I2C_IRQ 9
typedef enum {
I2C_DIRECTION_READ,
I2C_DIRECTION_WRITE
} I2C_DIRECTION;
struct quarkX1000_i2c_config {
QUARKX1000_I2C_SPEED speed;
QUARKX1000_I2C_ADDR_MODE addressing_mode;
quarkX1000_i2c_callback cb_rx;
quarkX1000_i2c_callback cb_tx;
quarkX1000_i2c_callback cb_err;
};
struct i2c_internal_data {
struct quarkX1000_i2c_config config;
pci_driver_t pci;
I2C_DIRECTION direction;
uint8_t rx_len;
uint8_t *rx_buffer;
uint8_t tx_len;
uint8_t *tx_buffer;
uint8_t rx_tx_len;
uint32_t hcnt;
uint32_t lcnt;
};
static struct i2c_internal_data device;
static uint32_t
read(uint32_t offset)
{
uint32_t res;
PCI_MMIO_READL(device.pci, res, offset);
return res;
}
static void
write(uint32_t offset, uint32_t val)
{
PCI_MMIO_WRITEL(device.pci, offset, val);
}
static uint32_t
get_value(uint32_t offset, uint32_t mask, uint32_t shift)
{
uint32_t register_value = read(offset);
register_value &= ~(0xFFFFFFFF - mask);
return register_value >> shift;
}
static void
set_value(uint32_t offset, uint32_t mask, uint32_t shift, uint32_t value)
{
uint32_t register_value = read(offset);
register_value &= ~mask;
register_value |= value << shift;
write(offset, register_value);
}
static void
i2c_data_read(void)
{
uint8_t i, rx_cnt;
if (device.rx_len == 0)
return;
rx_cnt = get_value(QUARKX1000_IC_RXFLR,
QUARKX1000_IC_RXFLR_MASK, QUARKX1000_IC_RXFLR_SHIFT);
if (rx_cnt > device.rx_len)
rx_cnt = device.rx_len;
for (i = 0; i < rx_cnt; i++) {
device.rx_buffer[i] = get_value(QUARKX1000_IC_DATA_CMD,
QUARKX1000_IC_DATA_CMD_DAT_MASK, QUARKX1000_IC_DATA_CMD_DAT_SHIFT);
}
device.rx_buffer += i;
device.rx_len -= i;
}
static void
i2c_data_send(void)
{
uint32_t data = 0;
uint8_t i, tx_cnt;
if (device.rx_tx_len == 0)
return;
tx_cnt = I2C_FIFO_DEPTH - get_value(QUARKX1000_IC_TXFLR,
QUARKX1000_IC_TXFLR_MASK, QUARKX1000_IC_TXFLR_SHIFT);
if (tx_cnt > device.rx_tx_len)
tx_cnt = device.rx_tx_len;
for (i = 0; i < tx_cnt; i++) {
if (device.tx_len > 0) {
data = device.tx_buffer[i];
if (device.tx_len == 1)
data |= (device.rx_len > 0) ? QUARKX1000_IC_DATA_CMD_RESTART_MASK : QUARKX1000_IC_DATA_CMD_STOP_MASK;
device.tx_len -= 1;
} else {
data = QUARKX1000_IC_DATA_CMD_CMD_MASK;
if (device.rx_tx_len == 1)
data |= QUARKX1000_IC_DATA_CMD_STOP_MASK;
}
write(QUARKX1000_IC_DATA_CMD, data);
device.rx_tx_len -= 1;
}
device.tx_buffer += i;
}
static bool
i2c_isr(void)
{
bool handled = false;
if (read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_STOP_DET_MASK) {
i2c_data_read();
write(QUARKX1000_IC_INTR_MASK, 0);
read(QUARKX1000_IC_CLR_INTR);
if (device.direction == I2C_DIRECTION_WRITE) {
if (device.config.cb_tx)
device.config.cb_tx();
} else {
if (device.config.cb_rx)
device.config.cb_rx();
}
handled = true;
}
if (read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK) {
i2c_data_send();
if (device.rx_tx_len <= 0) {
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK, QUARKX1000_IC_INTR_STAT_TX_EMPTY_SHIFT, 0);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_STOP_DET_MASK, QUARKX1000_IC_INTR_STAT_STOP_DET_SHIFT, 1);
}
handled = true;
}
if(read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_RX_FULL_MASK) {
i2c_data_read();
handled = true;
}
if (read(QUARKX1000_IC_INTR_STAT) & (QUARKX1000_IC_INTR_STAT_TX_ABRT_MASK
| QUARKX1000_IC_INTR_STAT_TX_OVER_MASK | QUARKX1000_IC_INTR_STAT_RX_OVER_MASK
| QUARKX1000_IC_INTR_STAT_RX_UNDER_MASK)) {
write(QUARKX1000_IC_INTR_MASK, 0);
read(QUARKX1000_IC_CLR_INTR);
if (device.config.cb_err)
device.config.cb_err();
handled = true;
}
return handled;
}
void
quarkX1000_i2c_configure(QUARKX1000_I2C_SPEED speed,
QUARKX1000_I2C_ADDR_MODE addressing_mode)
{
uint32_t hcnt, lcnt;
uint8_t ic_fs_spklen;
device.config.speed = speed;
device.config.addressing_mode = addressing_mode;
if (device.config.speed == QUARKX1000_I2C_SPEED_STANDARD) {
lcnt = I2C_STD_LCNT;
hcnt = I2C_STD_HCNT;
} else {
lcnt = I2C_FS_LCNT;
hcnt = I2C_FS_HCNT;
}
ic_fs_spklen = get_value(QUARKX1000_IC_FS_SPKLEN,
QUARKX1000_IC_FS_SPKLEN_MASK, QUARKX1000_IC_FS_SPKLEN_SHIFT);
/* We adjust the Low Count and High Count based on the Spike Suppression Limit */
device.lcnt = (lcnt < (ic_fs_spklen + I2C_FS_SPKLEN_LCNT_OFFSET)) ? ic_fs_spklen + I2C_FS_SPKLEN_LCNT_OFFSET : lcnt;
device.hcnt = (hcnt < (ic_fs_spklen + I2C_FS_SPKLEN_HCNT_OFFSET)) ? ic_fs_spklen + I2C_FS_SPKLEN_HCNT_OFFSET : hcnt;
/* Clear interrupts. */
read(QUARKX1000_IC_CLR_INTR);
}
void
quarkX1000_i2c_set_callbacks(quarkX1000_i2c_callback rx,
quarkX1000_i2c_callback tx,
quarkX1000_i2c_callback err)
{
device.config.cb_rx = rx;
device.config.cb_tx = tx;
device.config.cb_err = err;
}
static int
i2c_setup(void)
{
/* Clear all values */
write(QUARKX1000_IC_CON, 0);
/* Clear interrupts */
read(QUARKX1000_IC_CLR_INTR);
/* Quark X1000 SoC I2C only supports master mode. */
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_MASTER_MODE_MASK, QUARKX1000_IC_CON_MASTER_MODE_SHIFT, 1);
/* Set restart enable */
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_RESTART_EN_MASK, QUARKX1000_IC_CON_RESTART_EN_SHIFT, 1);
/* Set addressing mode */
if (device.config.addressing_mode == QUARKX1000_I2C_ADDR_MODE_10BIT) {
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_10BITADDR_MASTER_MASK, QUARKX1000_IC_CON_10BITADDR_MASTER_SHIFT, 1);
}
if (device.config.speed == QUARKX1000_I2C_SPEED_STANDARD) {
set_value(QUARKX1000_IC_SS_SCL_LCNT,
QUARKX1000_IC_SS_SCL_LCNT_MASK, QUARKX1000_IC_SS_SCL_LCNT_SHIFT, device.lcnt);
set_value(QUARKX1000_IC_SS_SCL_HCNT,
QUARKX1000_IC_SS_SCL_HCNT_MASK, QUARKX1000_IC_SS_SCL_HCNT_SHIFT, device.hcnt);
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_SPEED_MASK, QUARKX1000_IC_CON_SPEED_SHIFT, 0x1);
} else {
set_value(QUARKX1000_IC_FS_SCL_LCNT,
QUARKX1000_IC_FS_SCL_LCNT_MASK, QUARKX1000_IC_FS_SCL_LCNT_SHIFT, device.lcnt);
set_value(QUARKX1000_IC_FS_SCL_HCNT,
QUARKX1000_IC_FS_SCL_HCNT_MASK, QUARKX1000_IC_FS_SCL_HCNT_SHIFT, device.hcnt);
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_SPEED_MASK, QUARKX1000_IC_CON_SPEED_SHIFT, 0x2);
}
return 0;
}
static void
i2c_operation_setup(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
device.rx_len = read_len;
device.rx_buffer = read_buf;
device.tx_len = write_len;
device.tx_buffer = write_buf;
device.rx_tx_len = device.rx_len + device.tx_len;
/* Disable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
i2c_setup();
/* Disable interrupts */
write(QUARKX1000_IC_INTR_MASK, 0);
/* Clear interrupts */
read(QUARKX1000_IC_CLR_INTR);
/* Set address of target slave */
set_value(QUARKX1000_IC_TAR,
QUARKX1000_IC_TAR_MASK, QUARKX1000_IC_TAR_SHIFT, addr);
}
/* This is an interrupt based operation */
static int
i2c_operation(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
if (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK)
return -1;
i2c_operation_setup(write_buf, write_len, read_buf, read_len, addr);
/* Enable master TX and RX interrupts */
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_OVER_MASK, QUARKX1000_IC_INTR_STAT_TX_OVER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK, QUARKX1000_IC_INTR_STAT_TX_EMPTY_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_ABRT_MASK, QUARKX1000_IC_INTR_STAT_TX_ABRT_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_UNDER_MASK, QUARKX1000_IC_INTR_STAT_RX_UNDER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_OVER_MASK, QUARKX1000_IC_INTR_STAT_RX_OVER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_FULL_MASK, QUARKX1000_IC_INTR_STAT_RX_FULL_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_STOP_DET_MASK, QUARKX1000_IC_INTR_STAT_STOP_DET_SHIFT, 1);
/* Enable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 1);
return 0;
}
/* This is an interrupt based write */
int
quarkX1000_i2c_write(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_WRITE;
return i2c_operation(buf, len, 0, 0, addr);
}
/* This is an interrupt based read */
int
quarkX1000_i2c_read(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_READ;
return i2c_operation(0, 0, buf, len, addr);
}
static int
i2c_polling_operation(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
uint32_t start_time, intr_mask_stat;
if (!(read(QUARKX1000_IC_CON) & QUARKX1000_IC_CON_MASTER_MODE_MASK))
return -1;
/* Wait i2c idle */
start_time = clock_seconds();
while (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
return -1;
}
}
/* Get interrupt mask to restore in the end of polling operation */
intr_mask_stat = read(QUARKX1000_IC_INTR_MASK);
i2c_operation_setup(write_buf, write_len, read_buf, read_len, addr);
/* Enable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 1);
/* Transmit */
if (device.tx_len != 0) {
while (device.tx_len > 0) {
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_TFNF_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
i2c_data_send();
}
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_TFE_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
}
i2c_data_send();
/* Receive */
if (device.rx_len != 0) {
while (device.rx_len > 0) {
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_RFNE_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
i2c_data_read();
}
}
/* Stop Det */
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_RAW_INTR_STAT) & QUARKX1000_IC_INTR_STAT_STOP_DET_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
read(QUARKX1000_IC_CLR_STOP_DET);
/* Wait i2c idle */
start_time = clock_seconds();
while (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
/* Disable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
/* Restore interrupt mask */
write(QUARKX1000_IC_INTR_MASK, intr_mask_stat);
return 0;
}
int
quarkX1000_i2c_polling_write(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_WRITE;
return i2c_polling_operation(buf, len, 0, 0, addr);
}
int
quarkX1000_i2c_polling_read(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_READ;
return i2c_polling_operation(0, 0, buf, len ,addr);
}
int
quarkX1000_i2c_is_available(void)
{
return device.pci.mmio ? 1 : 0;
}
DEFINE_SHARED_IRQ(I2C_IRQ, IRQAGENT3, INTC, PIRQC, i2c_isr);
int
quarkX1000_i2c_init(void)
{
pci_config_addr_t pci_addr;
pci_addr.raw = 0;
pci_addr.bus = 0;
pci_addr.dev = 21;
pci_addr.func = 2;
pci_addr.reg_off = PCI_CONFIG_REG_BAR0;
pci_command_enable(pci_addr, PCI_CMD_1_MEM_SPACE_EN);
pci_init(&device.pci, pci_addr, 0);
return 0;
}