osd-contiki/cpu/x86/drivers/legacy_pc/uart-16x50.c
Michael LeMay 3908253038 x86: Add support for (paging-based) protection domains
This patch implements a simple, lightweight form of protection domains
using a pluggable framework.  Currently, the following plugin is
available:

 - Flat memory model with paging.

The overall goal of a protection domain implementation within this
framework is to define a set of resources that should be accessible to
each protection domain and to prevent that protection domain from
accessing other resources.  The details of each implementation of
protection domains may differ substantially, but they should all be
guided by the principle of least privilege.  However, that idealized
principle is balanced against the practical objectives of limiting the
number of relatively time-consuming context switches and minimizing
changes to existing code.

For additional information, please refer to cpu/x86/mm/README.md.

This patch also causes the C compiler to be used as the default linker
and assembler.
2016-03-21 17:18:06 -07:00

147 lines
5.5 KiB
C

/*
* Copyright (C) 2015, Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include "helpers.h"
#include "paging.h"
#include "prot-domains.h"
#include "syscalls.h"
#include "uart-16x50.h"
/* Refer to Intel Quark SoC X1000 Datasheet, Chapter 18 for more details on
* UART operation.
*/
/* Divisor Latch Access Bit (DLAB) mask for Line Control Register (LCR).
*
* When bit is set, enables access to divisor registers to set baud rate. When
* clear, enables access to other registers mapped to the same addresses as the
* divisor registers.
*/
#define UART_LCR_7_DLAB BIT(7)
/* Setting for LCR that configures the UART to operate with no parity, 1 stop
* bit, and eight bits per character.
*/
#define UART_LCR_8BITS 0x03
/* FIFO Control Register (FCR) bitmasks */
#define UART_FCR_0_FIFOE BIT(0) /*< enable FIFOs */
#define UART_FCR_1_RFIFOR BIT(1) /*< reset RX FIFO */
#define UART_FCR_2_XFIFOR BIT(2) /*< reset TX FIFO */
/* Line Status Register (LSR) Transmit Holding Register Empty bitmask to check
* whether the Transmit Holding Register (THR) or TX FIFO is empty.
*/
#define UART_LSR_5_THRE BIT(5)
/* MMIO registers for UART */
typedef struct uart_16x50_regs {
volatile uint32_t rbr_thr_dll, ier_dlh, iir_fcr, lcr;
volatile uint32_t mcr, lsr, msr, scr, usr, htx, dmasa;
} uart_16x50_regs_t;
#if X86_CONF_PROT_DOMAINS == X86_CONF_PROT_DOMAINS__PAGING
/* When paging-based protection domains are in use, at least one page of memory
* must be reserved to facilitate access to the MMIO region, since that is the
* smallest unit of memory that can be managed with paging:
*/
#define UART_MMIO_SZ MIN_PAGE_SIZE
#else
#define UART_MMIO_SZ sizeof(uart_16x50_regs_t)
#endif
void uart_16x50_setup(uart_16x50_driver_t c_this, uint16_t dl);
/*---------------------------------------------------------------------------*/
SYSCALLS_DEFINE(uart_16x50_setup, uart_16x50_driver_t c_this, uint16_t dl)
{
uart_16x50_regs_t *regs = (uart_16x50_regs_t *)PROT_DOMAINS_MMIO(c_this);
/* Set the DLAB bit to enable access to divisor settings. */
regs->lcr = UART_LCR_7_DLAB;
/* The divisor settings configure the baud rate, and may need to be defined
* on a per-device basis.
*/
regs->rbr_thr_dll = dl & UINT8_MAX;
regs->ier_dlh = dl >> 8;
/* Clear the DLAB bit to enable access to other settings and configure other
* UART parameters.
*/
regs->lcr = UART_LCR_8BITS;
/* Enable the FIFOs. */
regs->iir_fcr = UART_FCR_0_FIFOE | UART_FCR_1_RFIFOR | UART_FCR_2_XFIFOR;
}
/*---------------------------------------------------------------------------*/
/**
* \brief Transmit a character through a UART.
* \param c_this Initialized structure representing the device.
* \param c Character to be transmitted.
*
* This procedure will block indefinitely until the UART is ready
* to accept the character to be transmitted.
*/
SYSCALLS_DEFINE(uart_16x50_tx, uart_16x50_driver_t c_this, uint8_t c)
{
uart_16x50_regs_t *regs = (uart_16x50_regs_t *)PROT_DOMAINS_MMIO(c_this);
/* Wait for space in TX FIFO. */
while((regs->lsr & UART_LSR_5_THRE) == 0);
/* Add character to TX FIFO. */
regs->rbr_thr_dll = c;
}
/*---------------------------------------------------------------------------*/
/**
* \brief Initialize an MMIO-programmable 16X50 UART.
* \param c_this Structure that will be initialized to represent the device.
* \param pci_addr PCI address of device.
* \param dl Divisor setting to configure the baud rate.
*/
void
uart_16x50_init(uart_16x50_driver_t *c_this,
pci_config_addr_t pci_addr,
uint16_t dl)
{
/* This assumes that the UART had an MMIO range assigned to it by the
* firmware during boot.
*/
pci_init(c_this, pci_addr, UART_MMIO_SZ, 0, 0);
SYSCALLS_INIT(uart_16x50_setup);
SYSCALLS_AUTHZ(uart_16x50_setup, *c_this);
SYSCALLS_INIT(uart_16x50_tx);
SYSCALLS_AUTHZ(uart_16x50_tx, *c_this);
uart_16x50_setup(*c_this, dl);
}
/*---------------------------------------------------------------------------*/