a1759d5bed
* still not entirely integrated in the rest of the system * needs testing
216 lines
No EOL
4.7 KiB
Java
216 lines
No EOL
4.7 KiB
Java
package statistics;
|
|
|
|
//Gaussian CDF Taylor approximation
|
|
//Code borrowed from http://www1.fpl.fs.fed.us/distributions.html 19/9 2006
|
|
|
|
/**
|
|
*
|
|
*This class contains routines to calculate the
|
|
*normal cumulative distribution function (CDF) and
|
|
*its inverse.
|
|
*
|
|
*@version .5 --- June 7, 1996
|
|
*@version .6 --- January 10, 2001 (normcdf added)
|
|
*
|
|
*/
|
|
|
|
public class CDF_Normal extends Object {
|
|
|
|
/**
|
|
*
|
|
*This method calculates the normal cdf inverse function.
|
|
*<p>
|
|
*Let PHI(x) be the normal cdf. Suppose that Q calculates
|
|
*1.0 - PHI(x), and that QINV calculates QINV(p) for p in (0.0,.5].
|
|
*Then for p .le. .5, x = PHIINV(p) = -QINV(p).
|
|
*For p .gt. .5, x = PHIINV(p) = QINV(1.0 - p).
|
|
*The formula for approximating QINV is taken from Abramowitz and Stegun,
|
|
*Handbook of Mathematical Functions, Dover, 9th printing,
|
|
*formula 26.2.3, page 933. The error in x is claimed to
|
|
*be less than 4.5e-4 in absolute value.
|
|
*
|
|
*@param p p must lie between 0 and 1. xnormi returns
|
|
* the normal cdf inverse evaluated at p.
|
|
*
|
|
*@author Steve Verrill
|
|
*@version .5 --- June 7, 1996
|
|
*
|
|
*/
|
|
|
|
// FIX: Eventually I should build in a check that p lies in (0,1)
|
|
|
|
public static double xnormi(double p) {
|
|
|
|
double arg,t,t2,t3,xnum,xden,qinvp,x,pc;
|
|
|
|
final double c[] = {2.515517,
|
|
.802853,
|
|
.010328};
|
|
|
|
final double d[] = {1.432788,
|
|
.189269,
|
|
.001308};
|
|
|
|
if (p <= .5) {
|
|
|
|
arg = -2.0*Math.log(p);
|
|
t = Math.sqrt(arg);
|
|
t2 = t*t;
|
|
t3 = t2*t;
|
|
|
|
xnum = c[0] + c[1]*t + c[2]*t2;
|
|
xden = 1.0 + d[0]*t + d[1]*t2 + d[2]*t3;
|
|
qinvp = t - xnum/xden;
|
|
x = -qinvp;
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
pc = 1.0 - p;
|
|
arg = -2.0*Math.log(pc);
|
|
t = Math.sqrt(arg);
|
|
t2 = t*t;
|
|
t3 = t2*t;
|
|
|
|
xnum = c[0] + c[1]*t + c[2]*t2;
|
|
xden = 1.0 + d[0]*t + d[1]*t2 + d[2]*t3;
|
|
x = t - xnum/xden;
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
*This method calculates the normal cumulative distribution function.
|
|
*<p>
|
|
*It is based upon algorithm 5666 for the error function, from:<p>
|
|
*<pre>
|
|
* Hart, J.F. et al, 'Computer Approximations', Wiley 1968
|
|
*</pre>
|
|
*<p>
|
|
*The FORTRAN programmer was Alan Miller. The documentation
|
|
*in the FORTRAN code claims that the function is "accurate
|
|
*to 1.e-15."<p>
|
|
*Steve Verrill
|
|
*translated the FORTRAN code (the March 30, 1986 version)
|
|
*into Java. This translation was performed on January 10, 2001.
|
|
*
|
|
*@param z The method returns the value of the normal
|
|
* cumulative distribution function at z.
|
|
*
|
|
*@version .5 --- January 10, 2001
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
|
|
Here is a copy of the documentation in the FORTRAN code:
|
|
|
|
SUBROUTINE NORMP(Z, P, Q, PDF)
|
|
C
|
|
C Normal distribution probabilities accurate to 1.e-15.
|
|
C Z = no. of standard deviations from the mean.
|
|
C P, Q = probabilities to the left & right of Z. P + Q = 1.
|
|
C PDF = the probability density.
|
|
C
|
|
C Based upon algorithm 5666 for the error function, from:
|
|
C Hart, J.F. et al, 'Computer Approximations', Wiley 1968
|
|
C
|
|
C Programmer: Alan Miller
|
|
C
|
|
C Latest revision - 30 March 1986
|
|
C
|
|
|
|
*/
|
|
|
|
public static double normp(double z) {
|
|
|
|
double zabs;
|
|
double p;
|
|
double expntl,pdf;
|
|
|
|
final double p0 = 220.2068679123761;
|
|
final double p1 = 221.2135961699311;
|
|
final double p2 = 112.0792914978709;
|
|
final double p3 = 33.91286607838300;
|
|
final double p4 = 6.373962203531650;
|
|
final double p5 = .7003830644436881;
|
|
final double p6 = .3526249659989109E-01;
|
|
|
|
final double q0 = 440.4137358247522;
|
|
final double q1 = 793.8265125199484;
|
|
final double q2 = 637.3336333788311;
|
|
final double q3 = 296.5642487796737;
|
|
final double q4 = 86.78073220294608;
|
|
final double q5 = 16.06417757920695;
|
|
final double q6 = 1.755667163182642;
|
|
final double q7 = .8838834764831844E-1;
|
|
|
|
final double cutoff = 7.071;
|
|
final double root2pi = 2.506628274631001;
|
|
|
|
zabs = Math.abs(z);
|
|
|
|
// |z| > 37
|
|
|
|
if (z > 37.0) {
|
|
|
|
p = 1.0;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
if (z < -37.0) {
|
|
|
|
p = 0.0;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
// |z| <= 37.
|
|
|
|
expntl = Math.exp(-.5*zabs*zabs);
|
|
|
|
pdf = expntl/root2pi;
|
|
|
|
// |z| < cutoff = 10/sqrt(2).
|
|
|
|
if (zabs < cutoff) {
|
|
|
|
p = expntl*((((((p6*zabs + p5)*zabs + p4)*zabs + p3)*zabs +
|
|
p2)*zabs + p1)*zabs + p0)/(((((((q7*zabs + q6)*zabs +
|
|
q5)*zabs + q4)*zabs + q3)*zabs + q2)*zabs + q1)*zabs +
|
|
q0);
|
|
|
|
} else {
|
|
|
|
p = pdf/(zabs + 1.0/(zabs + 2.0/(zabs + 3.0/(zabs + 4.0/
|
|
(zabs + 0.65)))));
|
|
|
|
}
|
|
|
|
if (z < 0.0) {
|
|
|
|
return p;
|
|
|
|
} else {
|
|
|
|
p = 1.0 - p;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} |