284 lines
6.4 KiB
C
284 lines
6.4 KiB
C
#define GPIO_FUNC_SEL0 0x80000018 /* GPIO 15 - 0; 2 bit blocks */
|
|
|
|
#define BASE_UART1 0x80005000
|
|
#define UART1_CON 0x80005000
|
|
#define UART1_STAT 0x80005004
|
|
#define UART1_DATA 0x80005008
|
|
#define UR1CON 0x8000500c
|
|
#define UT1CON 0x80005010
|
|
#define UART1_CTS 0x80005014
|
|
#define UART1_BR 0x80005018
|
|
|
|
#define GPIO_PAD_DIR0 0x80000000
|
|
#define GPIO_DATA0 0x80000008
|
|
|
|
#include "embedded_types.h"
|
|
#include "nvm.h"
|
|
#include "maca.h"
|
|
|
|
#define reg(x) (*(volatile uint32_t *)(x))
|
|
|
|
#define DELAY 400000
|
|
|
|
#define DEBUG 1
|
|
#if DEBUG
|
|
#define dbg_putc(...) putc(__VA_ARGS__)
|
|
#define dbg_puts(...) puts(__VA_ARGS__)
|
|
#define dbg_put_hex(...) put_hex(__VA_ARGS__)
|
|
#define dbg_put_hex16(...) put_hex16(__VA_ARGS__)
|
|
#define dbg_put_hex32(...) put_hex32(__VA_ARGS__)
|
|
#else
|
|
#define dbg_putc(...)
|
|
#define dbg_puts(...)
|
|
#define dbg_put_hex(...)
|
|
#define dbg_put_hex16(...)
|
|
#define dbg_put_hex32(...)
|
|
#endif
|
|
|
|
const uint8_t hex[16]={'0','1','2','3','4','5','6','7',
|
|
'8','9','a','b','c','d','e','f'};
|
|
|
|
uint8_t getc(void);
|
|
void flushrx(void);
|
|
uint32_t to_u32(char *c);
|
|
|
|
#include "isr.h"
|
|
|
|
#define NBYTES 16
|
|
|
|
enum parse_states {
|
|
SCAN_X,
|
|
READ_CHARS,
|
|
PROCESS,
|
|
MAX_STATE,
|
|
};
|
|
|
|
__attribute__ ((section ("startup")))
|
|
void main(void) {
|
|
nvmType_t type=0;
|
|
nvmErr_t err;
|
|
volatile uint8_t c;
|
|
volatile uint32_t buf[NBYTES/4];
|
|
volatile uint32_t i;
|
|
volatile uint32_t len=0;
|
|
volatile uint32_t state = SCAN_X;
|
|
volatile uint32_t addr,data;
|
|
|
|
*(volatile uint32_t *)GPIO_PAD_DIR0 = 0x00000100;
|
|
|
|
/* Restore UART regs. to default */
|
|
/* in case there is still bootloader state leftover */
|
|
|
|
reg(UART1_CON) = 0x0000c800; /* mask interrupts, 16 bit sample --- helps explain the baud rate */
|
|
|
|
/* INC = 767; MOD = 9999 works: 115200 @ 24 MHz 16 bit sample */
|
|
#define INC 767
|
|
#define MOD 9999
|
|
reg(UART1_BR) = INC<<16 | MOD;
|
|
|
|
/* see Section 11.5.1.2 Alternate Modes */
|
|
/* you must enable the peripheral first BEFORE setting the function in GPIO_FUNC_SEL */
|
|
/* From the datasheet: "The peripheral function will control operation of the pad IF */
|
|
/* THE PERIPHERAL IS ENABLED. */
|
|
reg(UART1_CON) = 0x00000003; /* enable receive and transmit */
|
|
reg(GPIO_FUNC_SEL0) = ( (0x01 << (14*2)) | (0x01 << (15*2)) ); /* set GPIO15-14 to UART (UART1 TX and RX)*/
|
|
|
|
vreg_init();
|
|
|
|
// puts("CRM status: 0x");
|
|
// put_hex32(reg(0x80003018));
|
|
// puts("\n\r");
|
|
|
|
// puts("Detecting internal nvm\n\r");
|
|
|
|
err = nvm_detect(gNvmInternalInterface_c, &type);
|
|
|
|
/*
|
|
puts("nvm_detect returned: 0x");
|
|
put_hex(err);
|
|
puts(" type is: 0x");
|
|
put_hex32(type);
|
|
puts("\n\r");
|
|
*/
|
|
|
|
/* erase the flash */
|
|
// err = nvm_erase(gNvmInternalInterface_c, type, 0x4fffffff);
|
|
err = nvm_erase(gNvmInternalInterface_c, 1, 0x4fffffff);
|
|
|
|
/*
|
|
puts("nvm_erase returned: 0x");
|
|
put_hex(err);
|
|
puts("\n\r");
|
|
*/
|
|
|
|
/* say we are ready */
|
|
len = 0;
|
|
puts("ready");
|
|
flushrx();
|
|
|
|
/* read the length */
|
|
for(i=0; i<4; i++) {
|
|
c = getc();
|
|
/* bail if the first byte of the length is zero */
|
|
len += (c<<(i*8));
|
|
}
|
|
|
|
// puts("len: ");
|
|
// put_hex32(len);
|
|
// puts("\n\r");
|
|
|
|
/* write the OKOK magic */
|
|
((uint8_t *)buf)[0] = 'O'; ((uint8_t *)buf)[1] = 'K'; ((uint8_t *)buf)[2] = 'O'; ((uint8_t *)buf)[3] = 'K';
|
|
// ((uint8_t *)buf)[3] = 'x';
|
|
// err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)buf, 0, 4);
|
|
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)buf, 0, 4);
|
|
// puts("nvm_write returned: 0x");
|
|
// put_hex(err);
|
|
// puts("\n\r");
|
|
|
|
/* write the length */
|
|
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&len, 4, 4);
|
|
|
|
/* read a byte, write a byte */
|
|
/* byte at a time will make this work as a contiki process better */
|
|
/* for OTAP */
|
|
for(i=0; i<len; i++) {
|
|
c = getc();
|
|
// put_hex(c);
|
|
// puts(": ");
|
|
// err = nvm_write(gNvmInternalInterface_c, type, &c, 4+i, 1);
|
|
err = nvm_write(gNvmInternalInterface_c, 1, &c, 8+i, 1);
|
|
// if(err==0) { putc('.'); } else { putc('x'); }
|
|
// puts("nvm_write returned: 0x");
|
|
// put_hex(err);
|
|
// puts("\n\r");
|
|
}
|
|
|
|
puts("flasher done\n\r");
|
|
|
|
state = SCAN_X; addr=0;
|
|
while((c=getc())) {
|
|
if(state == SCAN_X) {
|
|
/* read until we see an 'x' */
|
|
if(c==0) { break; }
|
|
if(c!='x'){ continue; }
|
|
/* go to read_chars once we have an 'x' */
|
|
state = READ_CHARS;
|
|
i = 0;
|
|
}
|
|
if(state == READ_CHARS) {
|
|
/* read all the chars up to a ',' */
|
|
((uint8_t *)buf)[i++] = c;
|
|
/* after reading a ',' */
|
|
/* goto PROCESS state */
|
|
if((c == ',') || (c == 0)) { state = PROCESS; }
|
|
}
|
|
if(state == PROCESS) {
|
|
if(addr==0) {
|
|
/*interpret the string as the starting address */
|
|
addr = to_u32((uint8_t *)buf);
|
|
} else {
|
|
/* string is data to write */
|
|
data = to_u32((uint8_t *)buf);
|
|
puts("writing addr ");
|
|
put_hex32(addr);
|
|
puts(" data ");
|
|
put_hex32(data);
|
|
puts("\n\r");
|
|
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&data, addr, 4);
|
|
addr += 4;
|
|
}
|
|
/* look for the next 'x' */
|
|
state=SCAN_X;
|
|
}
|
|
}
|
|
|
|
while(1) {continue;};
|
|
}
|
|
|
|
void flushrx(void)
|
|
{
|
|
volatile uint8_t c;
|
|
while(reg(UR1CON) !=0) {
|
|
c = reg(UART1_DATA);
|
|
}
|
|
}
|
|
|
|
/* Convert from ASCII hex. Returns
|
|
the value, or 16 if it was space/newline, or
|
|
32 if some other character. */
|
|
uint8_t from_hex(uint8_t ch)
|
|
{
|
|
if(ch==' ' || ch=='\r' || ch=='\n')
|
|
return 16;
|
|
|
|
if(ch < '0')
|
|
goto bad;
|
|
if(ch <= '9')
|
|
return ch - '0';
|
|
ch |= 0x20;
|
|
if(ch < 'a')
|
|
goto bad;
|
|
if(ch <= 'f')
|
|
return ch - 'a' + 10;
|
|
bad:
|
|
return 32;
|
|
}
|
|
|
|
uint32_t to_u32(char *c)
|
|
{
|
|
volatile uint32_t ret=0;
|
|
volatile uint32_t i,val;
|
|
|
|
/* c should be /x\d+,/ */
|
|
i=1; /* skip x */
|
|
while(c[i] != ',') {
|
|
ret = ret<<4;
|
|
val = from_hex(c[i++]);
|
|
ret += val;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint8_t getc(void)
|
|
{
|
|
volatile uint8_t c;
|
|
while(reg(UR1CON) == 0);
|
|
|
|
c = reg(UART1_DATA);
|
|
return c;
|
|
}
|
|
|
|
|
|
void putc(uint8_t c) {
|
|
while(reg(UT1CON)==31); /* wait for there to be room in the buffer */
|
|
reg(UART1_DATA) = c;
|
|
}
|
|
|
|
void puts(uint8_t *s) {
|
|
while(s && *s!=0) {
|
|
putc(*s++);
|
|
}
|
|
}
|
|
|
|
void put_hex(uint8_t x)
|
|
{
|
|
putc(hex[x >> 4]);
|
|
putc(hex[x & 15]);
|
|
}
|
|
|
|
void put_hex16(uint16_t x)
|
|
{
|
|
put_hex((x >> 8) & 0xFF);
|
|
put_hex((x) & 0xFF);
|
|
}
|
|
|
|
void put_hex32(uint32_t x)
|
|
{
|
|
put_hex((x >> 24) & 0xFF);
|
|
put_hex((x >> 16) & 0xFF);
|
|
put_hex((x >> 8) & 0xFF);
|
|
put_hex((x) & 0xFF);
|
|
}
|
|
|