osd-contiki/platform/avr-raven/cfs-coffee-arch.c

719 lines
19 KiB
C

/*
* Copyright (c) 2009, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
/**
* \file
* Coffee architecture-dependent functionality for the AVR-Raven 1284p platform.
* \author
* Nicolas Tsiftes <nvt@sics.se>
* Frederic Thepaut <frederic.thepaut@inooi.com>
* David Kopf <dak664@embarqmail.com>
*/
#include <avr/boot.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <string.h>
#include "cfs-coffee-arch.h"
#define DEBUG 0
#if DEBUG
#include <stdio.h>
#define PRINTF(FORMAT,args...) printf_P(PSTR(FORMAT),##args)
#else
#define PRINTF(...)
#endif
#define TESTCOFFEE 1
#define DEBUG_CFS 1
#if TESTCOFFEE
#if DEBUG_CFS
#include <stdio.h>
#define PRINTF_CFS(FORMAT,args...) printf_P(PSTR(FORMAT),##args)
#else
#define PRINTF_CFS(...)
#endif
#include "cfs/cfs.h"
#include "cfs/cfs-coffee.h"
#include "lib/crc16.h"
#include "lib/random.h"
#include <stdio.h>
#define FAIL(x) error = (x); goto end;
#define FILE_SIZE 512
int
coffee_file_test(void)
{
int error;
int wfd, rfd, afd;
unsigned char buf[256], buf2[11];
int r, i, j, total_read;
unsigned offset;
cfs_remove("T1");
cfs_remove("T2");
cfs_remove("T3");
cfs_remove("T4");
cfs_remove("T5");
wfd = rfd = afd = -1;
for(r = 0; r < sizeof(buf); r++) {
buf[r] = r;
}
/* Test 1: Open for writing. */
wfd = cfs_open("T1", CFS_WRITE);
if(wfd < 0) {
FAIL(-1);
}
/* Test 2: Write buffer. */
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-2);
} else if(r < sizeof(buf)) {
FAIL(-3);
}
/* Test 3: Deny reading. */
r = cfs_read(wfd, buf, sizeof(buf));
if(r >= 0) {
FAIL(-4);
}
/* Test 4: Open for reading. */
rfd = cfs_open("T1", CFS_READ);
if(rfd < 0) {
FAIL(-5);
}
/* Test 5: Write to read-only file. */
r = cfs_write(rfd, buf, sizeof(buf));
if(r >= 0) {
FAIL(-6);
}
/* Test 7: Read the buffer written in Test 2. */
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-8);
} else if(r < sizeof(buf)) {
PRINTF_CFS("r=%d\n", r);
FAIL(-9);
}
/* Test 8: Verify that the buffer is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != r) {
PRINTF_CFS("r=%d. buf[r]=%d\n", r, buf[r]);
FAIL(-10);
}
}
/* Test 9: Seek to beginning. */
if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-11);
}
/* Test 10: Write to the log. */
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-12);
} else if(r < sizeof(buf)) {
FAIL(-13);
}
/* Test 11: Read the data from the log. */
cfs_seek(rfd, 0, CFS_SEEK_SET);
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-14);
} else if(r < sizeof(buf)) {
FAIL(-15);
}
/* Test 12: Verify that the data is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != r) {
FAIL(-16);
}
}
/* Test 13: Write a reversed buffer to the file. */
for(r = 0; r < sizeof(buf); r++) {
buf[r] = sizeof(buf) - r - 1;
}
if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-17);
}
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-18);
} else if(r < sizeof(buf)) {
FAIL(-19);
}
if(cfs_seek(rfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-20);
}
/* Test 14: Read the reversed buffer. */
cfs_seek(rfd, 0, CFS_SEEK_SET);
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-21);
} else if(r < sizeof(buf)) {
PRINTF_CFS("r = %d\n", r);
FAIL(-22);
}
/* Test 15: Verify that the data is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != sizeof(buf) - r - 1) {
FAIL(-23);
}
}
cfs_close(rfd);
cfs_close(wfd);
if(cfs_coffee_reserve("T2", FILE_SIZE) < 0) {
FAIL(-24);
}
/* Test 16: Test multiple writes at random offset. */
for(r = 0; r < 100; r++) {
wfd = cfs_open("T2", CFS_WRITE | CFS_READ);
if(wfd < 0) {
FAIL(-25);
}
offset = random_rand() % FILE_SIZE;
for(r = 0; r < sizeof(buf); r++) {
buf[r] = r;
}
if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) {
FAIL(-26);
}
if(cfs_write(wfd, buf, sizeof(buf)) != sizeof(buf)) {
FAIL(-27);
}
if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) {
FAIL(-28);
}
memset(buf, 0, sizeof(buf));
if(cfs_read(wfd, buf, sizeof(buf)) != sizeof(buf)) {
FAIL(-29);
}
for(i = 0; i < sizeof(buf); i++) {
if(buf[i] != i) {
PRINTF_CFS("buf[%d] != %d\n", i, buf[i]);
FAIL(-30);
}
}
}
/* Test 17: Append data to the same file many times. */
#define APPEND_BYTES 3000
#define BULK_SIZE 10
for (i = 0; i < APPEND_BYTES; i += BULK_SIZE) {
afd = cfs_open("T3", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-31);
}
for (j = 0; j < BULK_SIZE; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE)) != BULK_SIZE) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-32);
}
cfs_close(afd);
}
/* Test 18: Read back the data written in Test 17 and verify that it
is correct. */
afd = cfs_open("T3", CFS_READ);
if(afd < 0) {
FAIL(-33);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
FAIL(-34);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-35 r=%d\n",r);
FAIL(-35);
}
if(total_read != APPEND_BYTES) {
PRINTF_CFS("FAIL:-35 total_read=%d\n",total_read);
FAIL(-35);
}
cfs_close(afd);
/***************T4********************/
/* file T4 and T5 writing forces to use garbage collector in greedy mode
* this test is designed for 10kb of file system
* */
#define APPEND_BYTES_1 2000
#define BULK_SIZE_1 10
for (i = 0; i < APPEND_BYTES_1; i += BULK_SIZE_1) {
afd = cfs_open("T4", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-36);
}
for (j = 0; j < BULK_SIZE_1; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE_1)) != BULK_SIZE_1) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-37);
}
cfs_close(afd);
}
afd = cfs_open("T4", CFS_READ);
if(afd < 0) {
FAIL(-38);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
PRINTF_CFS("FAIL:-39, total_read=%d r=%d\n",total_read,r);
FAIL(-39);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-40 r=%d\n",r);
FAIL(-40);
}
if(total_read != APPEND_BYTES_1) {
PRINTF_CFS("FAIL:-41 total_read=%d\n",total_read);
FAIL(-41);
}
cfs_close(afd);
/***************T5********************/
#define APPEND_BYTES_2 1000
#define BULK_SIZE_2 10
for (i = 0; i < APPEND_BYTES_2; i += BULK_SIZE_2) {
afd = cfs_open("T5", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-42);
}
for (j = 0; j < BULK_SIZE_2; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE_2)) != BULK_SIZE_2) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-43);
}
cfs_close(afd);
}
afd = cfs_open("T5", CFS_READ);
if(afd < 0) {
FAIL(-44);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
PRINTF_CFS("FAIL:-45, total_read=%d r=%d\n",total_read,r);
FAIL(-45);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-46 r=%d\n",r);
FAIL(-46);
}
if(total_read != APPEND_BYTES_2) {
PRINTF_CFS("FAIL:-47 total_read=%d\n",total_read);
FAIL(-47);
}
cfs_close(afd);
error = 0;
end:
cfs_close(wfd); cfs_close(rfd); cfs_close(afd);
return error;
}
#endif /* TESTCOFFEE */
/*---------------------------------------------------------------------------*/
/*---------------------------EEPROM ROUTINES---------------------------------*/
/*---------------------------------------------------------------------------*/
#ifdef COFFEE_AVR_EEPROM
/* Letting .bss initialize nullb to zero saves COFFEE_SECTOR_SIZE of flash */
//static const unsigned char nullb[COFFEE_SECTOR_SIZE] = {0};
static const unsigned char nullb[COFFEE_SECTOR_SIZE];
/*---------------------------------------------------------------------------*/
/* Erase EEPROM sector
*/
void
avr_eeprom_erase(uint16_t sector)
{
eeprom_write(COFFEE_START + sector * COFFEE_SECTOR_SIZE,
(unsigned char *)nullb, sizeof(nullb));
}
#endif /* COFFEE_AVR_EEPROM */
#ifdef COFFEE_AVR_FLASH
/*---------------------------------------------------------------------------*/
/*---------------------------FLASH ROUTINES----------------------------------*/
/*---------------------------------------------------------------------------*/
/*
* Read from flash info buf. addr contains starting flash byte address
*/
void
avr_flash_read(CFS_CONF_OFFSET_TYPE addr, uint8_t *buf, CFS_CONF_OFFSET_TYPE size)
{
uint32_t addr32=COFFEE_START+addr;
uint16_t isize=size;
#if DEBUG
unsigned char *bufo=(unsigned char *)buf;
uint8_t i;
uint16_t w=addr32>>1; //Show progmem word address for debug
PRINTF("r0x%04x(%u) ",w,size);
#endif
#ifndef FLASH_WORD_READS
for (;isize>0;isize--) {
#if FLASH_COMPLEMENT_DATA
*buf++=~(uint8_t)pgm_read_byte_far(addr32++);
#else
*buf++=(uint8_t)pgm_read_byte_far(addr32++);
#endif /*FLASH_COMPLEMENT_DATA*/
}
#else
/* 130 bytes more PROGMEM, but faster */
if (isize&0x01) { //handle first odd byte
#if FLASH_COMPLEMENT_DATA
*buf++=~(uint8_t)pgm_read_byte_far(addr32++);
#else
*buf++=(uint8_t)pgm_read_byte_far(addr32++);
#endif /*FLASH_COMPLEMENT_DATA*/
isize--;
}
for (;isize>1;isize-=2) {//read words from flash
#if FLASH_COMPLEMENT_DATA
*(uint16_t *)buf=~(uint16_t)pgm_read_word_far(addr32);
#else
*(uint16_t *)buf=(uint16_t)pgm_read_word_far(addr32);
#endif /*FLASH_COMPLEMENT_DATA*/
buf+=2;
addr32+=2;
}
if (isize) { //handle last odd byte
#if FLASH_COMPLEMENT_DATA
*buf++=~(uint8_t)pgm_read_byte_far(addr32);
#else
*buf++=(uint8_t)pgm_read_byte_far(addr32);
#endif /*FLASH_COMPLEMENT_DATA*/
}
#endif /* FLASH_WORD_READS */
#if DEBUG>1
PRINTF("\nbuf=");
// PRINTF("%s",bufo);
// for (i=0;i<16;i++) PRINTF("%2x ",*bufo++);
#endif
}
/*---------------------------------------------------------------------------*/
/*
Erase the flash page(s) corresponding to the coffee sector.
This is done by calling the write routine with a null buffer and any address
within each page of the sector (we choose the first byte).
*/
BOOTLOADER_SECTION
void avr_flash_erase(coffee_page_t sector) {
coffee_page_t i;
uint32_t addr32;
#if FLASH_COMPLEMENT_DATA
volatile uint8_t sreg;
// Disable interrupts.
sreg = SREG;
cli();
for (i = 0; i < COFFEE_SECTOR_SIZE / COFFEE_PAGE_SIZE; i++) {
for (addr32 = COFFEE_START + (((sector + i) * COFFEE_PAGE_SIZE)
& ~(COFFEE_PAGE_SIZE - 1)); addr32 < (COFFEE_START + (((sector
+ i + 1) * COFFEE_PAGE_SIZE) & ~(COFFEE_PAGE_SIZE - 1))); addr32
+= SPM_PAGESIZE) {
boot_page_erase(addr32);
boot_spm_busy_wait();
}
}
//RE-enable interrupts
boot_rww_enable();
SREG = sreg;
#else
for (i=0;i<COFFEE_SECTOR_SIZE/COFFEE_PAGE_SIZE;i++) {
avr_flash_write((sector+i)*COFFEE_PAGE_SIZE,0,0);
}
#endif
#if 0
#if TESTCOFFEE
/* Defining TESTCOFFEE is a convenient way of testing a new configuration.
* It is triggered by an erase of the last sector.
* Note this routine will be reentered during the test! */
if ((sector+i)==COFFEE_PAGES-1) {
int j=(int)(COFFEE_START>>1),k=(int)((COFFEE_START>>1)+(COFFEE_SIZE>>1)),l=(int)(COFFEE_SIZE/1024UL);
printf_P(PSTR("\nTesting coffee filesystem [0x%08x -> 0x%08x (%uKb)] ..."),j,k,l);
int r= coffee_file_test();
if (r<0) {
printf_P(PSTR("\nFailed with return %d! :-(\n"),r);
} else {
printf_P(PSTR("Passed! :-)\n"));
}
}
#endif /* TESTCOFFEE */
#endif
}
/*httpd-fs routines
getchar is straigtforward.
strcmp only needs to handle file names for fs_open. Note filename in buf will not be zero terminated
if it fills the coffee name field, so a pseudo strcmp is done here.
strchr searches for script starts so must handle arbitrarily large strings
*/
char avr_httpd_fs_getchar(char *addr) {
char r;
avr_flash_read((CFS_CONF_OFFSET_TYPE) addr, (uint8_t*) &r, 1);
return r;
}
int avr_httpd_fs_strcmp (char *ram, char *addr) {
uint8_t i,*in,buf[32];
avr_flash_read((CFS_CONF_OFFSET_TYPE)addr, buf, sizeof(buf));
//return strcmp(ram, (char *)buf);
in=(uint8_t *)ram;
for (i=0;i<32;i++) {
if (buf[i]==0) return(0);
if (buf[i]!=*in) break;
in++;
}
/* A proper strcmp would return a + or minus number based on the last comparison*/
//if (buf[i]>*in) return(i); else return(-i);
return(i);
}
char * avr_httpd_fs_strchr (char *addr, int character) {
char buf[129],*pptr;
buf[128]=character;
while (1) {
avr_flash_read((CFS_CONF_OFFSET_TYPE)addr, (uint8_t *) buf, 128);
pptr=strchr(buf, character);
if (pptr!=&buf[128]) {
if (pptr==0) return 0;
return (addr+(pptr-buf));
}
addr+=128;
}
}
/*---------------------------------------------------------------------------*/
/*
* Transfer buf[size] from RAM to flash, starting at addr.
* If buf is null, just erase the flash page
* Note this routine has to be in the bootloader NRWW part of program memory,
* and that writing to NRWW (last 32 pages on the 1284p) will halt the CPU.
*/
BOOTLOADER_SECTION
void
avr_flash_write(CFS_CONF_OFFSET_TYPE addr, uint8_t *buf, CFS_CONF_OFFSET_TYPE size)
{
uint32_t addr32;
uint16_t w;
uint8_t bb,ba,sreg;
/* Disable interrupts, make sure no eeprom write in progress */
sreg = SREG;
cli();
eeprom_busy_wait();
/* Calculate the starting address of the first flash page being
modified (will be on a page boundary) and the number of
unaltered bytes before and after the data to be written. */
#if 0 //this is 8 bytes longer
uint16_t startpage=addr/COFFEE_PAGE_SIZE;
addr32=COFFEE_START+startpage*COFFEE_PAGE_SIZE;
#else
addr32=(COFFEE_ADDRESS&~(SPM_PAGESIZE-1))+(addr&~(SPM_PAGESIZE-1));
#endif
bb=addr & (SPM_PAGESIZE-1);
ba=COFFEE_PAGE_SIZE-((addr+size)&0xff);
#if DEBUG
uint16_t startpage=addr/COFFEE_PAGE_SIZE;
w=addr32>>1; //Show progmem word address for debug
if (buf) {
PRINTF("w0x%04x %u %u %u",w,size,bb,ba);
} else {
PRINTF("e0x%04x %u ",w,startpage);
}
#endif
/* If buf not null, modify the page(s) */
if (buf) {
if (size==0) return; //nothing to write
/*Copy the first part of the existing page into the write buffer */
while (bb>1) {
w=pgm_read_word_far(addr32);
boot_page_fill(addr32,w);
addr32+=2;
bb-=2;
}
/* Transfer the bytes to be modified */
while (size>1) {
if (bb) { //handle odd byte boundary
w=pgm_read_word_far(addr32);
#if FLASH_COMPLEMENT_DATA
w = ~w;
#endif /*FLASH_COMPLEMENT_DATA*/
w &= 0xff;
bb=0;
size++;
} else {
w = *buf++;
}
w += (*buf++) << 8;
#if FLASH_COMPLEMENT_DATA
w = ~w;
#endif /*FLASH_COMPLEMENT_DATA*/
boot_page_fill(addr32, w);
size-=2;
/* Below ought to work but writing to 0xnnnnnnfe modifies the NEXT flash page
for some reason, at least in the AVR Studio simulator.
if ((addr32&0x000000ff)==0x000000fe) { //handle page boundary
if (size) {
boot_page_erase(addr32);
boot_spm_busy_wait();
boot_page_write(addr32);
boot_spm_busy_wait();
}
}
addr32+=2;
*/
/* This works...*/
addr32+=2;
if ((addr32&0x000000ff)==0) { //handle page boundary
if (size) {
addr32-=0x42; //get an address within the page
boot_page_erase(addr32);
boot_spm_busy_wait();
boot_page_write(addr32);
boot_spm_busy_wait();
addr32+=0x42;
}
}
}
/* Copy the remainder of the existing page */
while (ba>1) {
w=pgm_read_word_far(addr32);
if (size) { //handle odd byte boundary
w &= 0xff00;
#if FLASH_COMPLEMENT_DATA
w +=~(*buf);
#else
w +=*buf;
#endif /*FLASH_COMPLEMENT_DATA*/
size=0;
}
boot_page_fill(addr32,w);
addr32+=2;
ba-=2;
}
/* If buf is null, erase the page to zero */
} else {
#if FLASH_COMPLEMENT_DATA
addr32+=2*SPM_PAGESIZE;
#else
for (w=0;w<SPM_PAGESIZE;w++) {
boot_page_fill(addr32, 0);
addr32+=2;
}
#endif /*FLASH_COMPLEMENT_DATA*/
}
/* Write the last (or only) page */
addr32-=0x42; //get an address within the page
boot_page_erase(addr32);
boot_spm_busy_wait();
#if FLASH_COMPLEMENT_DATA
if (buf) { //don't write zeroes to erased page
boot_page_write(addr32);
boot_spm_busy_wait();
}
#else
boot_page_write(addr32);
boot_spm_busy_wait();
#endif /*FLASH_COMPLEMENT_DATA*/
/* Reenable RWW-section again. We need this if we want to jump back
* to the application after bootloading. */
boot_rww_enable();
/* Re-enable interrupts (if they were ever enabled). */
SREG = sreg;
}
#endif /* COFFEE_AVR_FLASH */