The official git repository for OSD-Contiki, the open source OS for the Internet of Things
Find a file
oliverschmidt 1cab294517 The Contiki 2.x build system allows to define arbitrary macros for the C compiler preprocessor (in other word add -d<macro[=value]>'s to the C compiler command line) directly from the gnumake command line by setting the gnumake variable DEFINES to a comma-seperated list of macros (and optionally values) like this:
make TARGET=mytarget DEFINES=MYLOG, MYSIZE=100, MYTRACE

The build system does however _NOT_ take care to rebuild things if the DEFINES change so most likely a 'make clean' is advisable. To ease usage the DEFINES may be saved individually per target with the goal 'savedefines' similiar to savinf the target.

The 6502-based target leverage the DEFINES mechanism by introducing so-called 'high level config macros' which allow to configure Contiki per target AND per project.

Most of the time there's exactly one reasonable set of high level config macros for every combination of target and project. Therefore it makes sense to place them into CVS.
2008-05-26 09:28:28 +00:00
apps Fixed copy&paste issue. 2008-05-24 08:31:56 +00:00
backyard Moved old CC2420 driver to the backyard 2008-02-24 22:29:08 +00:00
core I seem to remember that we wanted to avoid ignoring gcc warnings that might trigger errors with other compilers ;-) 2008-05-16 21:31:57 +00:00
cpu Removed '!' as gnumake already adds '.'. 2008-05-22 19:43:08 +00:00
doc Contributions from Michael Baar. 2008-04-28 11:36:59 +00:00
examples The Contiki 2.x build system allows to define arbitrary macros for the C compiler preprocessor (in other word add -d<macro[=value]>'s to the C compiler command line) directly from the gnumake command line by setting the gnumake variable DEFINES to a comma-seperated list of macros (and optionally values) like this: 2008-05-26 09:28:28 +00:00
platform The recent optimizations (usage of language card bank2 through new C-library, logging through ROM routine, removal of unused IP forwarding code) allowed to increase the number of concurrent HTTP conntections from 3 to 7 :-) 2008-05-23 23:13:41 +00:00
tools Added a bootable ProDOS 8 disk image and my ProDOS 8 binary loader to by used by the 'disk' make target. 2008-05-22 22:25:03 +00:00
Makefile.include Removed '!' as gnumake already adds '.'. 2008-05-22 19:43:08 +00:00
README README 2007-03-29 23:42:18 +00:00
README-BUILDING Many project Makefiles build just one Contiki binary. Up to now the name of this binary was only available to the 'all' goal as prerequisite. So it was possible to create a non-project-specific rule to i.e. load that binary into the target device. 2008-05-26 08:04:10 +00:00
README-EXAMPLES Introduced web browser as new example using ctk fullscreen mode. 2007-12-15 22:36:50 +00:00

Contiki is an open source, highly portable, multi-tasking operating
system for memory-constrained networked embedded systems written by
Adam Dunkels at the Networked Embedded Systems group at the Swedish
Institute of Computer Science.

Contiki is designed for embedded systems with small amounts of
memory. A typical Contiki configuration is 2 kilobytes of RAM and 40
kilobytes of ROM. Contiki consists of an event-driven kernel on top of
which application programs are dynamically loaded and unloaded at
runtime. Contiki processes use light-weight protothreads that provide
a linear, thread-like programming style on top of the event-driven
kernel. Contiki also supports per-process optional preemptive
multi-threading, interprocess communication using message passing
through events, as well as an optional GUI subsystem with either
direct graphic support for locally connected terminals or networked
virtual display with VNC or over Telnet.

Contiki contains two communication stacks: uIP and Rime. uIP is a
small RFC-compliant TCP/IP stack that makes it possible for Contiki to
communicate over the Internet. Rime is a lightweight communication
stack designed for low-power radios. Rime provides a wide range of
communication primitives, from best-effort local area broadcast, to
reliable multi-hop bulk data flooding.

Contiki runs on a variety of platform ranging from embedded
microcontrollers such as the MSP430 and the AVR to old
homecomputers. Code footprint is on the order of kilobytes and memory
usage can be configured to be as low as tens of bytes.

Contiki is written in the C programming language and is freely
available as open source under a BSD-style license. More information
about Contiki can be found at the Contiki home page:
http://www.sics.se/contiki/