449 lines
12 KiB
C
449 lines
12 KiB
C
/*
|
|
* Copyright (c) 2007, Swedish Institute of Computer Science
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file is part of the Contiki operating system.
|
|
*
|
|
* @(#)$Id: simple-cc2420.c,v 1.1 2007/03/15 21:26:00 adamdunkels Exp $
|
|
*/
|
|
/*
|
|
* This code is almost device independent and should be easy to port.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "contiki.h"
|
|
|
|
#if defined(__AVR__)
|
|
#include <avr/io.h>
|
|
#elif defined(__MSP430__)
|
|
#include <io.h>
|
|
#endif
|
|
|
|
#include "dev/leds.h"
|
|
|
|
#include "dev/spi.h"
|
|
#include "dev/simple-cc2420.h"
|
|
#include "dev/cc2420_const.h"
|
|
|
|
#define FOOTER1_CRC_OK 0x80
|
|
#define FOOTER1_CORRELATION 0x7f
|
|
|
|
#if 0
|
|
#define PRINTF(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define PRINTF(...) do {} while (0)
|
|
#endif
|
|
/*---------------------------------------------------------------------------*/
|
|
PROCESS(simple_cc2420_process, "CC2420 driver");
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static void (* receiver_callback)(void);
|
|
|
|
signed char simple_cc2420_last_rssi;
|
|
u8_t simple_cc2420_last_correlation;
|
|
|
|
static u8_t receive_on;
|
|
/* Radio stuff in network byte order. */
|
|
static u16_t pan_id;
|
|
/*---------------------------------------------------------------------------*/
|
|
static unsigned
|
|
getreg(enum cc2420_register regname)
|
|
{
|
|
unsigned reg;
|
|
int s = splhigh();
|
|
FASTSPI_GETREG(regname, reg);
|
|
splx(s);
|
|
return reg;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
setreg(enum cc2420_register regname, unsigned value)
|
|
{
|
|
int s = splhigh();
|
|
FASTSPI_SETREG(regname, value);
|
|
splx(s);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
strobe(enum cc2420_register regname)
|
|
{
|
|
int s = splhigh();
|
|
FASTSPI_STROBE(regname);
|
|
splx(s);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static unsigned
|
|
status(void)
|
|
{
|
|
u8_t status;
|
|
int s = splhigh();
|
|
FASTSPI_UPD_STATUS(status);
|
|
splx(s);
|
|
return status;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
#define AUTOACK (1 << 4)
|
|
#define ADR_DECODE (1 << 11)
|
|
#define RXFIFO_PROTECTION (1 << 9)
|
|
#define CORR_THR(n) (((n) & 0x1f) << 6)
|
|
#define FIFOP_THR(n) ((n) & 0x7f)
|
|
#define RXBPF_LOCUR (1 << 13);
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
simple_cc2420_set_receiver(void (* recv)(void))
|
|
{
|
|
receiver_callback = recv;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
simple_cc2420_init(void)
|
|
{
|
|
u16_t reg;
|
|
{
|
|
int s = splhigh();
|
|
__cc2420_arch_init(); /* Initalize ports and SPI. */
|
|
DISABLE_FIFOP_INT();
|
|
FIFOP_INT_INIT();
|
|
splx(s);
|
|
}
|
|
|
|
/* Turn on voltage regulator and reset. */
|
|
SET_VREG_ACTIVE();
|
|
//clock_delay(250); OK
|
|
SET_RESET_ACTIVE();
|
|
clock_delay(127);
|
|
SET_RESET_INACTIVE();
|
|
//clock_delay(125); OK
|
|
|
|
|
|
/* Turn on the crystal oscillator. */
|
|
strobe(CC2420_SXOSCON);
|
|
|
|
/* Turn off automatic packet acknowledgment. */
|
|
reg = getreg(CC2420_MDMCTRL0);
|
|
reg &= ~AUTOACK;
|
|
setreg(CC2420_MDMCTRL0, reg);
|
|
|
|
/* Turn off address decoding. */
|
|
reg = getreg(CC2420_MDMCTRL0);
|
|
reg &= ~ADR_DECODE;
|
|
setreg(CC2420_MDMCTRL0, reg);
|
|
|
|
/* Change default values as recomended in the data sheet, */
|
|
/* correlation threshold = 20, RX bandpass filter = 1.3uA. */
|
|
setreg(CC2420_MDMCTRL1, CORR_THR(20));
|
|
reg = getreg(CC2420_RXCTRL1);
|
|
reg |= RXBPF_LOCUR;
|
|
setreg(CC2420_RXCTRL1, reg);
|
|
|
|
/* Set the FIFOP threshold to maximum. */
|
|
setreg(CC2420_IOCFG0, FIFOP_THR(127));
|
|
|
|
/* Turn off "Security enable" (page 32). */
|
|
reg = getreg(CC2420_SECCTRL0);
|
|
reg &= ~RXFIFO_PROTECTION;
|
|
setreg(CC2420_SECCTRL0, reg);
|
|
|
|
simple_cc2420_set_chan_pan_addr(11, 0xffff, 0x0000, NULL);
|
|
|
|
process_start(&simple_cc2420_process, NULL);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
int
|
|
simple_cc2420_send(const u8_t *payload, u8_t payload_len)
|
|
{
|
|
u8_t spiStatusByte;
|
|
int s, i;
|
|
|
|
/* struct hdr_802_15::len shall *not* be counted, thus the -1.
|
|
* 2 == sizeof(footer).
|
|
*/
|
|
/* if(((hdr_len - 1) + payload_len + 2) > MAX_PACKET_LEN) {
|
|
return -1;
|
|
}*/
|
|
|
|
/* This code uses the CC2420 CCA (Clear Channel Assessment) to
|
|
* implement Carrier Sense Multiple Access with Collision Avoidance
|
|
* (CSMA-CA) and requires the receiver to be enabled and ready.
|
|
*/
|
|
if(!receive_on) {
|
|
return -2;
|
|
}
|
|
|
|
/* Wait for previous transmission to finish and RSSI. */
|
|
do {
|
|
spiStatusByte = status();
|
|
if(!(spiStatusByte & BV(CC2420_RSSI_VALID))) { /* RSSI needed by CCA */
|
|
continue;
|
|
}
|
|
} while(spiStatusByte & BV(CC2420_TX_ACTIVE));
|
|
|
|
#if 0
|
|
hdr->dst_pan = pan_id; /* Not at fixed position! xxx/bg */
|
|
last_correspondent = hdr->dst; /* Not dst either. */
|
|
last_used_seq++;
|
|
hdr->seq = last_used_seq;
|
|
cc2420_ack_received = 0;
|
|
#endif
|
|
|
|
/* Write packet to TX FIFO, appending FCS if AUTOCRC is enabled. */
|
|
strobe(CC2420_SFLUSHTX); /* Cancel send that never started. */
|
|
s = splhigh();
|
|
/* FASTSPI_WRITE_FIFO(hdr, hdr_len);*/
|
|
FASTSPI_WRITE_FIFO(&payload_len, 1);
|
|
FASTSPI_WRITE_FIFO(payload, payload_len);
|
|
splx(s);
|
|
PRINTF("simple_cc2420_send: wrote %d bytes\n", payload_len);
|
|
|
|
/* if(hdr->dst == 0xffff) {
|
|
int i;
|
|
for(i = 1; i < 3; i++) {
|
|
if(do_send() >= 0) {
|
|
return 0;
|
|
}
|
|
clock_delay(i*256);
|
|
}
|
|
}*/
|
|
|
|
if(FIFOP_IS_1 && !FIFO_IS_1) {
|
|
/* RXFIFO overflow, send on retransmit. */
|
|
PRINTF("rxfifo overflow!\n");
|
|
return -4;
|
|
}
|
|
|
|
/* The TX FIFO can only hold one packet! Make sure to not overrun
|
|
* FIFO by waiting for transmission to start here and synchronizing
|
|
* with the CC2420_TX_ACTIVE check in cc2420_send.
|
|
*
|
|
* Note that we may have to wait up to 320 us (20 symbols) before
|
|
* transmission starts.
|
|
*/
|
|
#ifdef TMOTE_SKY
|
|
#define LOOP_20_SYMBOLS 100 /* 326us (msp430 @ 2.4576MHz) */
|
|
#elif __AVR__
|
|
#define LOOP_20_SYMBOLS 500 /* XXX */
|
|
#endif
|
|
strobe(CC2420_STXONCCA);
|
|
for(i = LOOP_20_SYMBOLS; i > 0; i--) {
|
|
if(SFD_IS_1) {
|
|
PRINTF("simple_cc2420: do_send() transmission has started\n");
|
|
return 0; /* Transmission has started. */
|
|
}
|
|
}
|
|
|
|
PRINTF("simple_cc2420: do_send() transmission never started\n");
|
|
return -3; /* Transmission never started! */
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
simple_cc2420_off(void)
|
|
{
|
|
u8_t spiStatusByte;
|
|
|
|
if (receive_on == 0)
|
|
return;
|
|
receive_on = 0;
|
|
/* Wait for transmission to end before turning radio off. */
|
|
do {
|
|
spiStatusByte = status();
|
|
} while(spiStatusByte & BV(CC2420_TX_ACTIVE));
|
|
|
|
strobe(CC2420_SRFOFF);
|
|
DISABLE_FIFOP_INT();
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
simple_cc2420_on(void)
|
|
{
|
|
if(receive_on) {
|
|
return;
|
|
}
|
|
receive_on = 1;
|
|
|
|
strobe(CC2420_SRXON);
|
|
strobe(CC2420_SFLUSHRX);
|
|
ENABLE_FIFOP_INT();
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
simple_cc2420_set_chan_pan_addr(unsigned channel, /* 11 - 26 */
|
|
unsigned pan,
|
|
unsigned addr,
|
|
const u8_t *ieee_addr)
|
|
{
|
|
/*
|
|
* Subtract the base channel (11), multiply by 5, which is the
|
|
* channel spacing. 357 is 2405-2048 and 0x4000 is LOCK_THR = 1.
|
|
*/
|
|
u8_t spiStatusByte;
|
|
u16_t f = channel;
|
|
int s;
|
|
|
|
f = 5*(f - 11) + 357 + 0x4000;
|
|
/*
|
|
* Writing RAM requires crystal oscillator to be stable.
|
|
*/
|
|
do {
|
|
spiStatusByte = status();
|
|
} while(!(spiStatusByte & (BV(CC2420_XOSC16M_STABLE))));
|
|
|
|
pan_id = pan;
|
|
setreg(CC2420_FSCTRL, f);
|
|
s = splhigh();
|
|
FASTSPI_WRITE_RAM_LE(&pan, CC2420RAM_PANID, 2, f);
|
|
FASTSPI_WRITE_RAM_LE(&addr, CC2420RAM_SHORTADDR, 2, f);
|
|
if(ieee_addr != NULL) {
|
|
FASTSPI_WRITE_RAM_LE(ieee_addr, CC2420RAM_IEEEADDR, 8, f);
|
|
}
|
|
splx(s);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static volatile u8_t rx_fifo_remaining_bytes;
|
|
|
|
/*
|
|
* Interrupt either leaves frame intact in FIFO or reads *only* the
|
|
* MAC header and sets rx_fifo_remaining_bytes.
|
|
*
|
|
* In order to quickly empty the FIFO ack processing is done at
|
|
* interrupt priority rather than poll priority.
|
|
*/
|
|
int
|
|
__cc2420_intr(void)
|
|
{
|
|
u8_t length;
|
|
/* const u8_t *const ack_footer = (u8_t *)&h.dst_pan;*/
|
|
|
|
leds_toggle(LEDS_YELLOW);
|
|
CLEAR_FIFOP_INT();
|
|
|
|
if(spi_busy || rx_fifo_remaining_bytes > 0) {
|
|
/* SPI bus hardware is currently used elsewhere (UART0 or I2C bus)
|
|
* or we already have a packet in the works and will have to defer
|
|
* interrupt processing of this packet in a fake interrupt.
|
|
*/
|
|
process_poll(&simple_cc2420_process);
|
|
return 1;
|
|
}
|
|
|
|
FASTSPI_READ_FIFO_BYTE(length);
|
|
if(length > SIMPLE_CC2420_MAX_PACKET_LEN) {
|
|
/* Oops, we must be out of sync. */
|
|
FASTSPI_STROBE(CC2420_SFLUSHRX);
|
|
FASTSPI_STROBE(CC2420_SFLUSHRX);
|
|
leds_toggle(LEDS_RED);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* The payload and footer is now left in the RX FIFO and will be
|
|
* picked up asynchronously at poll priority in the cc2420_process
|
|
* below.
|
|
*/
|
|
rx_fifo_remaining_bytes = length;
|
|
process_poll(&simple_cc2420_process);
|
|
leds_toggle(LEDS_GREEN);
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
PROCESS_THREAD(simple_cc2420_process, ev, data)
|
|
{
|
|
PROCESS_BEGIN();
|
|
|
|
while(1) {
|
|
PROCESS_YIELD();
|
|
|
|
if(receiver_callback != NULL) {
|
|
receiver_callback();
|
|
} else {
|
|
PRINTF("simple_cc2420_process dropping %d bytes\n",
|
|
rx_fifo_remaining_bytes);
|
|
if(rx_fifo_remaining_bytes > 0) {
|
|
int s;
|
|
s = splhigh();
|
|
FASTSPI_READ_FIFO_GARBAGE(rx_fifo_remaining_bytes);
|
|
rx_fifo_remaining_bytes = 0; /* RX FIFO emptied! */
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
PROCESS_END();
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
int
|
|
simple_cc2420_read(u8_t *buf, u8_t bufsize)
|
|
{
|
|
u8_t footer[2];
|
|
int len;
|
|
int s;
|
|
|
|
len = rx_fifo_remaining_bytes;
|
|
|
|
if(len > 0) {
|
|
/* Read payload and two bytes of footer */
|
|
if(len > bufsize) {
|
|
PRINTF("simple_cc2420_poll too big len=%d\n", len);
|
|
s = splhigh();
|
|
FASTSPI_READ_FIFO_GARBAGE(len);
|
|
rx_fifo_remaining_bytes = 0; /* RX FIFO emptied! */
|
|
splx(s);
|
|
len = 0;
|
|
} else {
|
|
s = splhigh();
|
|
FASTSPI_READ_FIFO_NO_WAIT(buf, len - 2);
|
|
FASTSPI_READ_FIFO_NO_WAIT(footer, 2);
|
|
rx_fifo_remaining_bytes = 0; /* RX FIFO emptied! */
|
|
splx(s);
|
|
if(footer[1] & FOOTER1_CRC_OK) {
|
|
simple_cc2420_last_rssi = footer[0];
|
|
simple_cc2420_last_correlation = footer[1] & FOOTER1_CORRELATION;
|
|
/* if((h.fc0 & FC0_TYPE_MASK) == FC0_TYPE_DATA) {
|
|
uip_len = len - 2;
|
|
}*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clean up in case of FIFO overflow! This happens for every full
|
|
* length frame and is signaled by FIFOP = 1 and FIFO = 0.
|
|
*/
|
|
if(FIFOP_IS_1 && !FIFO_IS_1) {
|
|
strobe(CC2420_SFLUSHRX);
|
|
strobe(CC2420_SFLUSHRX);
|
|
}
|
|
|
|
if(FIFOP_IS_1) {
|
|
s = splhigh();
|
|
__cc2420_intr(); /* Fake interrupt! */
|
|
splx(s);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|