547 lines
15 KiB
C
547 lines
15 KiB
C
#include <mc1322x.h>
|
|
#include <stdio.h>
|
|
|
|
#ifndef DEBUG_MACA
|
|
#define DEBUG_MACA 0
|
|
#endif
|
|
#if (DEBUG_MACA == 0)
|
|
#define PRINTF(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define PRINTF(...)
|
|
#endif
|
|
|
|
#define reg(x) (*(volatile uint32_t *)(x))
|
|
|
|
static uint8_t ram_values[4];
|
|
|
|
void init_phy(void)
|
|
{
|
|
volatile uint32_t cnt;
|
|
|
|
maca_reset = maca_reset_rst;
|
|
|
|
for(cnt=0; cnt < 100; cnt++);
|
|
|
|
maca_reset = maca_reset_cln_on;
|
|
maca_control = control_seq_nop;
|
|
#define DELAY 400000
|
|
for(cnt=0; cnt < DELAY; cnt++);
|
|
|
|
maca_tmren = maca_start_clk | maca_cpl_clk;
|
|
maca_divider = gMACA_Clock_DIV_c;
|
|
maca_warmup = 0x00180012;
|
|
maca_eofdelay = 0x00000004;
|
|
maca_ccadelay = 0x001a0022;
|
|
maca_txccadelay = 0x00000025;
|
|
maca_framesync = 0x000000A7;
|
|
maca_clk = 0x00000008;
|
|
// maca_maskirq = 0; //(maca_irq_cm | maca_irq_acpl | maca_irq_rst | maca_irq_di | maca_irq_crc | maca_irq_flt );
|
|
maca_maskirq = (maca_irq_rst | maca_irq_acpl | maca_irq_cm | maca_irq_flt | maca_irq_crc);
|
|
maca_slotoffset = 0x00350000;
|
|
}
|
|
|
|
void reset_maca(void)
|
|
{
|
|
uint32_t tmp;
|
|
MACA_WRITE(maca_control, control_seq_nop);
|
|
do
|
|
{
|
|
tmp = MACA_READ(maca_status);
|
|
}
|
|
while ((tmp & maca_status_cc_mask) == cc_not_completed);
|
|
|
|
/* Clear all interrupts. */
|
|
MACA_WRITE(maca_clrirq, 0xFFFF);
|
|
}
|
|
|
|
/*
|
|
004030c4 <SMAC_InitFlybackSettings>:
|
|
4030c4: 4806 ldr r0, [pc, #24] (4030e0 <SMAC_InitFlybackSettings+0x1c>) // r0 gets base 0x80009a00
|
|
4030c6: 6881 ldr r1, [r0, #8] // r1 gets *(0x80009a08)
|
|
4030c8: 4806 ldr r0, [pc, #24] (4030e4 <SMAC_InitFlybackSettings+0x20>) // r0 gets 0x0000f7df
|
|
4030ca: 4308 orrs r0, r1 // or them, r0 has it
|
|
4030cc: 4904 ldr r1, [pc, #16] (4030e0 <SMAC_InitFlybackSettings+0x1c>) // r1 gets base 0x80009a00
|
|
4030ce: 6088 str r0, [r1, #8] // put r0 into 0x80009a08
|
|
4030d0: 0008 lsls r0, r1, #0 // r0 gets r1, r0 is the base now
|
|
4030d2: 4905 ldr r1, [pc, #20] (4030e8 <SMAC_InitFlybackSettings+0x24>) // r1 gets 0x00ffffff
|
|
4030d4: 60c1 str r1, [r0, #12] // put 0x00ffffff into base+12
|
|
4030d6: 0b09 lsrs r1, r1, #12 // r1 = 0x00ffffff >> 12
|
|
4030d8: 6101 str r1, [r0, #16] // put r1 base+16
|
|
4030da: 2110 movs r1, #16 // r1 gets 16
|
|
4030dc: 6001 str r1, [r0, #0] // put r1 in the base
|
|
4030de: 4770 bx lr // return
|
|
4030e0: 80009a00 .word 0x80009a00
|
|
4030e4: 0000f7df .word 0x0000f7df
|
|
4030e8: 00ffffff .word 0x00ffffff
|
|
*/
|
|
|
|
/* tested and is good */
|
|
#define RF_BASE 0x80009a00
|
|
void flyback_init(void) {
|
|
uint32_t val8, or;
|
|
|
|
val8 = *(volatile uint32_t *)(RF_BASE+8);
|
|
or = val8 | 0x0000f7df;
|
|
*(volatile uint32_t *)(RF_BASE+8) = or;
|
|
*(volatile uint32_t *)(RF_BASE+12) = 0x00ffffff;
|
|
*(volatile uint32_t *)(RF_BASE+16) = (((uint32_t)0x00ffffff)>>12);
|
|
*(volatile uint32_t *)(RF_BASE) = 16;
|
|
/* good luck and godspeed */
|
|
}
|
|
|
|
#define MAX_SEQ1 2
|
|
const uint32_t addr_seq1[MAX_SEQ1] = {
|
|
0x80003048,
|
|
0x8000304c,
|
|
};
|
|
|
|
const uint32_t data_seq1[MAX_SEQ1] = {
|
|
0x00000f78,
|
|
0x00607707,
|
|
};
|
|
|
|
|
|
#define MAX_SEQ2 2
|
|
const uint32_t addr_seq2[MAX_SEQ2] = {
|
|
0x8000a050,
|
|
0x8000a054,
|
|
};
|
|
|
|
const uint32_t data_seq2[MAX_SEQ2] = {
|
|
0x0000047b,
|
|
0x0000007b,
|
|
};
|
|
|
|
#define MAX_CAL3_SEQ1 3
|
|
const uint32_t addr_cal3_seq1[MAX_CAL3_SEQ1] = { 0x80009400,0x80009a04,0x80009a00, };
|
|
const uint32_t data_cal3_seq1[MAX_CAL3_SEQ1] = {0x00020017,0x8185a0a4,0x8c900025, };
|
|
|
|
#define MAX_CAL3_SEQ2 2
|
|
const uint32_t addr_cal3_seq2[MAX_CAL3_SEQ2] = { 0x80009a00,0x80009a00,};
|
|
const uint32_t data_cal3_seq2[MAX_CAL3_SEQ2] = { 0x8c900021,0x8c900027,};
|
|
|
|
#define MAX_CAL3_SEQ3 1
|
|
const uint32_t addr_cal3_seq3[MAX_CAL3_SEQ3] = { 0x80009a00 };
|
|
const uint32_t data_cal3_seq3[MAX_CAL3_SEQ3] = { 0x8c900000 };
|
|
|
|
#define MAX_CAL5 4
|
|
const uint32_t addr_cal5[MAX_CAL5] = {
|
|
0x80009400,
|
|
0x8000a050,
|
|
0x8000a054,
|
|
0x80003048,
|
|
};
|
|
const uint32_t data_cal5[MAX_CAL5] = {
|
|
0x00000017,
|
|
0x00000000,
|
|
0x00000000,
|
|
0x00000f00,
|
|
};
|
|
|
|
#define MAX_DATA 43
|
|
const uint32_t addr_reg_rep[MAX_DATA] = { 0x80004118,0x80009204,0x80009208,0x8000920c,0x80009210,0x80009300,0x80009304,0x80009308,0x8000930c,0x80009310,0x80009314,0x80009318,0x80009380,0x80009384,0x80009388,0x8000938c,0x80009390,0x80009394,0x8000a008,0x8000a018,0x8000a01c,0x80009424,0x80009434,0x80009438,0x8000943c,0x80009440,0x80009444,0x80009448,0x8000944c,0x80009450,0x80009460,0x80009464,0x8000947c,0x800094e0,0x800094e4,0x800094e8,0x800094ec,0x800094f0,0x800094f4,0x800094f8,0x80009470,0x8000981c,0x80009828 };
|
|
|
|
const uint32_t data_reg_rep[MAX_DATA] = { 0x00180012,0x00000605,0x00000504,0x00001111,0x0fc40000,0x20046000,0x4005580c,0x40075801,0x4005d801,0x5a45d800,0x4a45d800,0x40044000,0x00106000,0x00083806,0x00093807,0x0009b804,0x000db800,0x00093802,0x00000015,0x00000002,0x0000000f,0x0000aaa0,0x01002020,0x016800fe,0x8e578248,0x000000dd,0x00000946,0x0000035a,0x00100010,0x00000515,0x00397feb,0x00180358,0x00000455,0x00000001,0x00020003,0x00040014,0x00240034,0x00440144,0x02440344,0x04440544,0x0ee7fc00,0x00000082,0x0000002a };
|
|
|
|
|
|
/* has been tested and it good */
|
|
void vreg_init(void) {
|
|
volatile uint32_t i;
|
|
*(volatile uint32_t *)(0x80003000) = 0x00000018; /* set default state */
|
|
*(volatile uint32_t *)(0x80003048) = 0x00000f04; /* bypass the buck */
|
|
for(i=0; i<0x161a8; i++) { continue; } /* wait for the bypass to take */
|
|
// while((((*(volatile uint32_t *)(0x80003018))>>17) & 1) !=1) { continue; } /* wait for the bypass to take */
|
|
*(volatile uint32_t *)(0x80003048) = 0x00000ff8; /* start the regulators */
|
|
}
|
|
|
|
void radio_off(void) {
|
|
/* turn off the radio regulators */
|
|
reg(0x80003048) = 0x00000f00;
|
|
/* hold the maca in reset */
|
|
maca_reset = maca_reset_rst;
|
|
}
|
|
|
|
void radio_on(void) {
|
|
/* turn the radio regulators back on */
|
|
reg(0x80003048) = 0x00000f78;
|
|
/* reinitialize the phy */
|
|
init_phy();
|
|
}
|
|
|
|
/* initialized with 0x4c */
|
|
uint8_t ctov[16] = {
|
|
0x0b,
|
|
0x0b,
|
|
0x0b,
|
|
0x0a,
|
|
0x0d,
|
|
0x0d,
|
|
0x0c,
|
|
0x0c,
|
|
0x0f,
|
|
0x0e,
|
|
0x0e,
|
|
0x0e,
|
|
0x11,
|
|
0x10,
|
|
0x10,
|
|
0x0f,
|
|
};
|
|
|
|
/* get_ctov thanks to Umberto */
|
|
|
|
#define _INIT_CTOV_WORD_1 0x00dfbe77
|
|
#define _INIT_CTOV_WORD_2 0x023126e9
|
|
uint8_t get_ctov( uint32_t r0, uint32_t r1 )
|
|
{
|
|
|
|
r0 = r0 * _INIT_CTOV_WORD_1;
|
|
r0 += ( r1 << 22 );
|
|
r0 += _INIT_CTOV_WORD_2;
|
|
|
|
r0 = (uint32_t)(((int32_t)r0) >> 25);
|
|
|
|
return (uint8_t)r0;
|
|
}
|
|
|
|
|
|
/* radio_init has been tested to be good */
|
|
void radio_init(void) {
|
|
volatile uint32_t i;
|
|
/* sequence 1 */
|
|
for(i=0; i<MAX_SEQ1; i++) {
|
|
*(volatile uint32_t *)(addr_seq1[i]) = data_seq1[i];
|
|
}
|
|
/* seq 1 delay */
|
|
for(i=0; i<0x161a8; i++) { continue; }
|
|
/* sequence 2 */
|
|
for(i=0; i<MAX_SEQ2; i++) {
|
|
*(volatile uint32_t *)(addr_seq2[i]) = data_seq2[i];
|
|
}
|
|
/* modem val */
|
|
*(volatile uint32_t *)0x80009000 = 0x80050100;
|
|
/* cal 3 seq 1*/
|
|
for(i=0; i<MAX_CAL3_SEQ1; i++) {
|
|
*(volatile uint32_t *)(addr_cal3_seq1[i]) = data_cal3_seq1[i];
|
|
}
|
|
/* cal 3 delay */
|
|
for(i=0; i<0x11194; i++) { continue; }
|
|
/* cal 3 seq 2*/
|
|
for(i=0; i<MAX_CAL3_SEQ2; i++) {
|
|
*(volatile uint32_t *)(addr_cal3_seq2[i]) = data_cal3_seq2[i];
|
|
}
|
|
/* cal 3 delay */
|
|
for(i=0; i<0x11194; i++) { continue; }
|
|
/* cal 3 seq 3*/
|
|
for(i=0; i<MAX_CAL3_SEQ3; i++) {
|
|
*(volatile uint32_t *)(addr_cal3_seq3[i]) = data_cal3_seq3[i];
|
|
}
|
|
/* cal 5 */
|
|
for(i=0; i<MAX_CAL5; i++) {
|
|
*(volatile uint32_t *)(addr_cal5[i]) = data_cal5[i];
|
|
}
|
|
/*reg replacment */
|
|
for(i=0; i<MAX_DATA; i++) {
|
|
*(volatile uint32_t *)(addr_reg_rep[i]) = data_reg_rep[i];
|
|
}
|
|
|
|
PRINTF("initfromflash\n\r");
|
|
|
|
*(volatile uint32_t *)(0x80003048) = 0x00000f04; /* bypass the buck */
|
|
for(i=0; i<0x161a8; i++) { continue; } /* wait for the bypass to take */
|
|
// while((((*(volatile uint32_t *)(0x80003018))>>17) & 1) !=1) { continue; } /* wait for the bypass to take */
|
|
*(volatile uint32_t *)(0x80003048) = 0x00000fa4; /* start the regulators */
|
|
for(i=0; i<0x161a8; i++) { continue; } /* wait for the bypass to take */
|
|
|
|
init_from_flash(0x1F000);
|
|
|
|
PRINTF("ram_values:\n\r");
|
|
for(i=0; i<4; i++) {
|
|
PRINTF(" 0x%02x\n\r",ram_values[i]);
|
|
}
|
|
|
|
PRINTF("radio_init: ctov parameter 0x%02x\n\r",ram_values[3]);
|
|
for(i=0; i<16; i++) {
|
|
ctov[i] = get_ctov(i,ram_values[3]);
|
|
PRINTF("radio_init: ctov[%d] = 0x%02x\n\r",i,ctov[i]);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
const uint32_t PSMVAL[19] = {
|
|
0x0000080f,
|
|
0x0000080f,
|
|
0x0000080f,
|
|
0x0000080f,
|
|
0x0000081f,
|
|
0x0000081f,
|
|
0x0000081f,
|
|
0x0000080f,
|
|
0x0000080f,
|
|
0x0000080f,
|
|
0x0000001f,
|
|
0x0000000f,
|
|
0x0000000f,
|
|
0x00000816,
|
|
0x0000001b,
|
|
0x0000000b,
|
|
0x00000802,
|
|
0x00000817,
|
|
0x00000003,
|
|
};
|
|
|
|
const uint32_t PAVAL[19] = {
|
|
0x000022c0,
|
|
0x000022c0,
|
|
0x000022c0,
|
|
0x00002280,
|
|
0x00002303,
|
|
0x000023c0,
|
|
0x00002880,
|
|
0x000029f0,
|
|
0x000029f0,
|
|
0x000029f0,
|
|
0x000029c0,
|
|
0x00002bf0,
|
|
0x000029f0,
|
|
0x000028a0,
|
|
0x00002800,
|
|
0x00002ac0,
|
|
0x00002880,
|
|
0x00002a00,
|
|
0x00002b00,
|
|
};
|
|
|
|
const uint32_t AIMVAL[19] = {
|
|
0x000123a0,
|
|
0x000163a0,
|
|
0x0001a3a0,
|
|
0x0001e3a0,
|
|
0x000223a0,
|
|
0x000263a0,
|
|
0x0002a3a0,
|
|
0x0002e3a0,
|
|
0x000323a0,
|
|
0x000363a0,
|
|
0x0003a3a0,
|
|
0x0003a3a0,
|
|
0x0003e3a0,
|
|
0x000423a0,
|
|
0x000523a0,
|
|
0x000423a0,
|
|
0x0004e3a0,
|
|
0x0004e3a0,
|
|
0x0004e3a0,
|
|
};
|
|
|
|
/* tested and seems to be good */
|
|
#define ADDR_POW1 0x8000a014
|
|
#define ADDR_POW2 ADDR_POW1 + 12
|
|
#define ADDR_POW3 ADDR_POW1 + 64
|
|
void set_power(uint8_t power) {
|
|
reg(ADDR_POW1) = PSMVAL[power];
|
|
reg(ADDR_POW2) = (ADDR_POW1>>18) | PAVAL[power];
|
|
reg(ADDR_POW3) = AIMVAL[power];
|
|
}
|
|
|
|
const uint8_t VCODivI[16] = {
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x2f,
|
|
0x30,
|
|
0x30,
|
|
0x30,
|
|
0x2f,
|
|
0x30,
|
|
0x30,
|
|
0x30,
|
|
0x30,
|
|
};
|
|
|
|
const uint32_t VCODivF[16] = {
|
|
0x00355555,
|
|
0x006aaaaa,
|
|
0x00a00000,
|
|
0x00d55555,
|
|
0x010aaaaa,
|
|
0x01400000,
|
|
0x01755555,
|
|
0x01aaaaaa,
|
|
0x01e00000,
|
|
0x00155555,
|
|
0x004aaaaa,
|
|
0x00800000,
|
|
0x00b55555,
|
|
0x00eaaaaa,
|
|
0x01200000,
|
|
0x01555555,
|
|
};
|
|
|
|
/* tested good */
|
|
#define ADDR_CHAN1 0x80009800
|
|
#define ADDR_CHAN2 (ADDR_CHAN1+12)
|
|
#define ADDR_CHAN3 (ADDR_CHAN1+16)
|
|
#define ADDR_CHAN4 (ADDR_CHAN1+48)
|
|
void set_channel(uint8_t chan) {
|
|
volatile uint32_t tmp;
|
|
|
|
tmp = reg(ADDR_CHAN1);
|
|
tmp = tmp & 0xbfffffff;
|
|
reg(ADDR_CHAN1) = tmp;
|
|
|
|
reg(ADDR_CHAN2) = VCODivI[chan];
|
|
reg(ADDR_CHAN3) = VCODivF[chan];
|
|
|
|
tmp = reg(ADDR_CHAN4);
|
|
tmp = tmp | 2;
|
|
reg(ADDR_CHAN4) = tmp;
|
|
|
|
tmp = reg(ADDR_CHAN4);
|
|
tmp = tmp | 4;
|
|
reg(ADDR_CHAN4) = tmp;
|
|
|
|
tmp = tmp & 0xffffe0ff;
|
|
tmp = tmp | (((ctov[chan])<<8)&0x1F00);
|
|
reg(ADDR_CHAN4) = tmp;
|
|
/* duh! */
|
|
}
|
|
|
|
#define ROM_END 0x0013ffff
|
|
#define ENTRY_EOF 0x00000e0f
|
|
/* processes up to 4 words of initialization entries */
|
|
/* returns the number of words processed */
|
|
uint32_t exec_init_entry(volatile uint32_t *entries, uint8_t *valbuf)
|
|
{
|
|
volatile uint32_t i;
|
|
if(entries[0] <= ROM_END) {
|
|
if (entries[0] == 0) {
|
|
/* do delay command*/
|
|
PRINTF("init_entry: delay 0x%08x\n\r", entries[1]);
|
|
for(i=0; i<entries[1]; i++) { continue; }
|
|
return 2;
|
|
} else if (entries[0] == 1) {
|
|
/* do bit set/clear command*/
|
|
PRINTF("init_entry: bit set clear 0x%08x 0x%08x 0x%08x\n\r", entries[1], entries[2], entries[3]);
|
|
reg(entries[2]) = (reg(entries[2]) & ~entries[1]) | (entries[3] & entries[1]);
|
|
return 4;
|
|
} else if ((entries[0] >= 16) &&
|
|
(entries[0] < 0xfff1)) {
|
|
/* store bytes in valbuf */
|
|
PRINTF("init_entry: store in valbuf 0x%02x position %d\n\r", entries[1],(entries[0]>>4)-1);
|
|
valbuf[(entries[0]>>4)-1] = entries[1];
|
|
return 2;
|
|
} else if (entries[0] == ENTRY_EOF) {
|
|
PRINTF("init_entry: eof ");
|
|
return 0;
|
|
} else {
|
|
/* invalid command code */
|
|
PRINTF("init_entry: invaild code 0x%08x\n\r",entries[0]);
|
|
return 0;
|
|
}
|
|
} else { /* address isn't in ROM space */
|
|
/* do store value in address command */
|
|
PRINTF("init_entry: address value pair - *0x%08x = 0x%08x\n\r",entries[0],entries[1]);
|
|
reg(entries[0]) = entries[1];
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
|
|
#define FLASH_INIT_MAGIC 0x00000abc
|
|
uint32_t init_from_flash(uint32_t addr) {
|
|
nvmType_t type=0;
|
|
nvmErr_t err;
|
|
volatile uint32_t buf[8];
|
|
volatile uint32_t len;
|
|
volatile uint32_t i=0,j;
|
|
|
|
err = nvm_detect(gNvmInternalInterface_c, &type);
|
|
PRINTF("nvm_detect returned type 0x%08x err 0x%02x\n\r", type, err);
|
|
|
|
nvm_setsvar(0);
|
|
err = nvm_read(gNvmInternalInterface_c, type, (uint8_t *)buf, addr, 8);
|
|
i+=8;
|
|
PRINTF("nvm_read returned: 0x%02x\n\r",err);
|
|
|
|
for(j=0; j<4; j++) {
|
|
PRINTF("0x%08x\n\r",buf[j]);
|
|
}
|
|
|
|
if(buf[0] == FLASH_INIT_MAGIC) {
|
|
len = buf[1] & 0x0000ffff;
|
|
while(i < (len-4)) {
|
|
err = nvm_read(gNvmInternalInterface_c, type, (uint8_t *)buf, addr+i, 32);
|
|
i += 4*exec_init_entry(buf, ram_values);
|
|
}
|
|
return i;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Do the ABORT-Wait-NOP-Wait sequence in order to prevent MACA malfunctioning.
|
|
* This seqeunce is synchronous and no interrupts should be triggered when it is done.
|
|
*/
|
|
void ResumeMACASync(void)
|
|
{
|
|
uint32_t clk, TsmRxSteps, LastWarmupStep, LastWarmupData, LastWarmdownStep, LastWarmdownData;
|
|
// bool_t tmpIsrStatus;
|
|
volatile uint32_t i;
|
|
|
|
// ITC_DisableInterrupt(gMacaInt_c);
|
|
// AppInterrupts_ProtectFromMACAIrq(tmpIsrStatus); <- Original from MAC code, but not sure how is it implemented
|
|
|
|
/* Manual TSM modem shutdown */
|
|
|
|
/* read TSM_RX_STEPS */
|
|
TsmRxSteps = (*((volatile uint32_t *)(0x80009204)));
|
|
|
|
/* isolate the RX_WU_STEPS */
|
|
/* shift left to align with 32-bit addressing */
|
|
LastWarmupStep = (TsmRxSteps & 0x1f) << 2;
|
|
/* Read "current" TSM step and save this value for later */
|
|
LastWarmupData = (*((volatile uint32_t *)(0x80009300 + LastWarmupStep)));
|
|
|
|
/* isolate the RX_WD_STEPS */
|
|
/* right-shift bits down to bit 0 position */
|
|
/* left-shift to align with 32-bit addressing */
|
|
LastWarmdownStep = ((TsmRxSteps & 0x1f00) >> 8) << 2;
|
|
/* write "last warmdown data" to current TSM step to shutdown rx */
|
|
LastWarmdownData = (*((volatile uint32_t *)(0x80009300 + LastWarmdownStep)));
|
|
(*((volatile uint32_t *)(0x80009300 + LastWarmupStep))) = LastWarmdownData;
|
|
|
|
/* Abort */
|
|
MACA_WRITE(maca_control, 1);
|
|
|
|
/* Wait ~8us */
|
|
for (clk = maca_clk, i = 0; maca_clk - clk < 3 && i < 300; i++)
|
|
;
|
|
|
|
/* NOP */
|
|
MACA_WRITE(maca_control, 0);
|
|
|
|
/* Wait ~8us */
|
|
for (clk = maca_clk, i = 0; maca_clk - clk < 3 && i < 300; i++)
|
|
;
|
|
|
|
|
|
/* restore original "last warmup step" data to TSM (VERY IMPORTANT!!!) */
|
|
(*((volatile uint32_t *)(0x80009300 + LastWarmupStep))) = LastWarmupData;
|
|
|
|
|
|
|
|
/* Clear all MACA interrupts - we should have gotten the ABORT IRQ */
|
|
MACA_WRITE(maca_clrirq, 0xFFFF);
|
|
|
|
// AppInterrupts_UnprotectFromMACAIrq(tmpIsrStatus); <- Original from MAC code, but not sure how is it implemented
|
|
// ITC_EnableInterrupt(gMacaInt_c);
|
|
}
|