/* * Copyright (c) 2012, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. * */ /** * \brief This module contains AVR-specific code to implement * the Contiki core clock functions. * * \author David Kopf <dak664@embarqmail.com> and others. * */ /** \addtogroup avr * @{ */ /** * \defgroup avrclock AVR clock implementation * @{ */ /** * \file * This file contains AVR-specific code to implement the Contiki core clock functions. * */ /** * These routines define the AVR-specific calls declared in /core/sys/clock.h * CLOCK_SECOND is the number of ticks per second. * It is defined through CONF_CLOCK_SECOND in the contiki-conf.h for each platform. * The usual AVR defaults are 128 or 125 ticks per second, counting a prescaled CPU clock * using the 8 bit timer0. * * clock_time_t is usually declared by the platform as an unsigned 16 bit data type, * thus intervals up to 512 or 524 seconds can be measured with ~8 millisecond precision. * For longer intervals the 32 bit clock_seconds() is available. * * Since a carry to a higer byte can occur during an interrupt, declaring them non-static * for direct examination can cause occasional time reversals! * * clock-avr.h contains the specific setup code for each mcu. */ #include "sys/clock.h" #include "dev/clock-avr.h" #include "sys/etimer.h" #include <avr/io.h> #include <avr/interrupt.h> /* Two tick counters avoid a software divide when CLOCK_SECOND is not a power of two. */ #if CLOCK_SECOND && (CLOCK_SECOND - 1) #define TWO_COUNTERS 1 #endif /* count is usually a 16 bit variable, although the platform can declare it otherwise */ static volatile clock_time_t count; #if TWO_COUNTERS /* scount is the 8 bit counter that counts ticks modulo CLOCK_SECONDS */ static volatile uint8_t scount; #endif /* seconds is available globally but non-atomic update during interrupt can cause time reversals */ volatile unsigned long seconds; /* sleepseconds is the number of seconds sleeping since startup, available globally */ long sleepseconds; /* Set RADIOSTATS to monitor radio on time (must also be set in the radio driver) */ #if RF230BB && AVR_WEBSERVER #define RADIOSTATS 1 #endif #if RADIOSTATS static volatile uint8_t rcount; volatile unsigned long radioontime; extern uint8_t RF230_receive_on; #endif /* Set RADIO_CONF_CALIBRATE_INTERVAL for periodic calibration of the PLL during extended radio on time. * The RF230 data sheet suggests every 5 minutes if the temperature is fluctuating. * At present the specified interval is ignored, and an 8 bit counter gives 256 second intervals. * Actual calibration is done by the driver on the next transmit request. */ #if RADIO_CONF_CALIBRATE_INTERVAL extern volatile uint8_t rf230_calibrate; static uint8_t calibrate_interval; #endif /*---------------------------------------------------------------------------*/ /** * Start the clock by enabling the timer comparison interrupts. */ void clock_init(void) { cli (); OCRSetup(); sei (); } /*---------------------------------------------------------------------------*/ /** * Return the tick counter. When 16 bit it typically wraps every 10 minutes. * The comparison avoids the need to disable clock interrupts for an atomic * read of the multi-byte variable. */ clock_time_t clock_time(void) { clock_time_t tmp; do { tmp = count; } while(tmp != count); return tmp; } /*---------------------------------------------------------------------------*/ /** * Return seconds, default is time since startup. * The comparison avoids the need to disable clock interrupts for an atomic * read of the four-byte variable. */ unsigned long clock_seconds(void) { unsigned long tmp; do { tmp = seconds; } while(tmp != seconds); return tmp; } /*---------------------------------------------------------------------------*/ /** * Set seconds, e.g. to a standard epoch for an absolute date/time. */ void clock_set_seconds(unsigned long sec) { seconds = sec; } /*---------------------------------------------------------------------------*/ /** * Wait for a number of clock ticks. */ void clock_wait(clock_time_t t) { clock_time_t endticks = clock_time() + t; if (sizeof(clock_time_t) == 1) { while ((signed char )(clock_time() - endticks) < 0) {;} } else if (sizeof(clock_time_t) == 2) { while ((signed short)(clock_time() - endticks) < 0) {;} } else { while ((signed long )(clock_time() - endticks) < 0) {;} } } /*---------------------------------------------------------------------------*/ /** * Delay the CPU for up to 65535*(4000000/F_CPU) microseconds. * Copied from _delay_loop_2 in AVR library delay_basic.h, 4 clocks per loop. * For accurate short delays, inline _delay_loop_2 in the caller, use a constant * value for the delay, and disable interrupts if necessary. */ static inline void my_delay_loop_2(uint16_t __count) __attribute__((always_inline)); void my_delay_loop_2(uint16_t __count) { __asm__ volatile ( "1: sbiw %0,1" "\n\t" "brne 1b" : "=w" (__count) : "0" (__count) ); } void clock_delay_usec(uint16_t howlong) { #if 0 /* Accurate delay at any frequency, but introduces a 64 bit intermediate * and has a 279 clock overhead. */ if(howlong<=(uint16_t)(279000000UL/F_CPU)) return; howlong-=(uint16_t) (279000000UL/F_CPU); my_delay_loop_2(((uint64_t)(howlong) * (uint64_t) F_CPU) / 4000000ULL); /* Remaining numbers tweaked for the breakpoint CPU frequencies */ /* Add other frequencies as necessary */ #elif F_CPU>=16000000UL if(howlong<1) return; my_delay_loop_2((howlong*(uint16_t)(F_CPU/3250000))); #elif F_CPU >= 12000000UL if(howlong<2) return; howlong-=(uint16_t) (3*12000000/F_CPU); my_delay_loop_2((howlong*(uint16_t)(F_CPU/3250000))); #elif F_CPU >= 8000000UL if(howlong<4) return; howlong-=(uint16_t) (3*8000000/F_CPU); my_delay_loop_2((howlong*(uint16_t)(F_CPU/2000000))/2); #elif F_CPU >= 4000000UL if(howlong<5) return; howlong-=(uint16_t) (4*4000000/F_CPU); my_delay_loop_2((howlong*(uint16_t)(F_CPU/2000000))/2); #elif F_CPU >= 2000000UL if(howlong<11) return; howlong-=(uint16_t) (10*2000000/F_CPU); my_delay_loop_2((howlong*(uint16_t)(F_CPU/1000000))/4); #elif F_CPU >= 1000000UL if(howlong<=17) return; howlong-=(uint16_t) (17*1000000/F_CPU); my_delay_loop_2((howlong*(uint16_t)(F_CPU/1000000))/4); #else howlong >> 5; if (howlong < 1) return; my_delay_loop_2(howlong); #endif } #if 0 /*---------------------------------------------------------------------------*/ /** * Legacy delay. The original clock_delay for the msp430 used a granularity * of 2.83 usec. This approximates that delay for values up to 1456 usec. * (The largest core call in leds.c uses 400). */ void clock_delay(unsigned int howlong) { if(howlong<2) return; clock_delay_usec((45*howlong)>>4); } #endif /*---------------------------------------------------------------------------*/ /** * Delay up to 65535 milliseconds. * \param dt How many milliseconds to delay. * * Neither interrupts nor the watchdog timer is disabled over the delay. * Platforms are not required to implement this call. * \note This will break for CPUs clocked above 260 MHz. */ void clock_delay_msec(uint16_t howlong) { #if F_CPU>=16000000 while(howlong--) clock_delay_usec(1000); #elif F_CPU>=8000000 uint16_t i=996; while(howlong--) {clock_delay_usec(i);i=999;} #elif F_CPU>=4000000 uint16_t i=992; while(howlong--) {clock_delay_usec(i);i=999;} #elif F_CPU>=2000000 uint16_t i=989; while(howlong--) {clock_delay_usec(i);i=999;} #else uint16_t i=983; while(howlong--) {clock_delay_usec(i);i=999;} #endif } /*---------------------------------------------------------------------------*/ /** * Adjust the system current clock time. * \param dt How many ticks to add * * Typically used to add ticks after an MCU sleep * clock_seconds will increment if necessary to reflect the tick addition. * Leap ticks or seconds can (rarely) be introduced if the ISR is not blocked. */ void clock_adjust_ticks(clock_time_t howmany) { uint8_t sreg = SREG;cli(); count += howmany; #if TWO_COUNTERS howmany+= scount; #endif while(howmany >= CLOCK_SECOND) { howmany -= CLOCK_SECOND; seconds++; sleepseconds++; #if RADIOSTATS if (RF230_receive_on) radioontime += 1; #endif } #if TWO_COUNTERS scount = howmany; #endif SREG=sreg; } /*---------------------------------------------------------------------------*/ /* This it the timer comparison match interrupt. * It maintains the tick counter, clock_seconds, and etimer updates. * * If the interrupts derive from an external crystal, the CPU instruction * clock can optionally be phase locked to it. This allows accurate rtimer * interrupts for strobe detection during radio duty cycling. * Phase lock is accomplished by adjusting OSCCAL based on the phase error * since the last interrupt. */ /*---------------------------------------------------------------------------*/ #if defined(DOXYGEN) /** \brief ISR for the TIMER0 or TIMER2 interrupt as defined in * clock-avr.h for the particular MCU. */ void AVR_OUTPUT_COMPARE_INT(void); #else ISR(AVR_OUTPUT_COMPARE_INT) { count++; #if TWO_COUNTERS if(++scount >= CLOCK_SECOND) { scount = 0; #else if(count%CLOCK_SECOND==0) { #endif seconds++; #if RADIO_CONF_CALIBRATE_INTERVAL /* Force a radio PLL frequency calibration every 256 seconds */ if (++calibrate_interval==0) { rf230_calibrate=1; } #endif } #if RADIOSTATS /* Sample radio on time. Less accurate than ENERGEST but a smaller footprint */ if (RF230_receive_on) { if (++rcount >= CLOCK_SECOND) { rcount=0; radioontime++; } } #endif #if F_CPU == 0x800000 && USE_32K_CRYSTAL /* Special routine to phase lock CPU to 32768 watch crystal. * We are interrupting 128 times per second. * If RTIMER_ARCH_SECOND is a multiple of 128 we can use the residual modulo * 128 to determine whether the clock is too fast or too slow. * E.g. for 8192 the phase should be constant modulo 0x40 * OSCCAL is started in the lower range at 90, allowed to stabilize, then * rapidly raised or lowered based on the phase comparison. * It gives less phase noise to do this every tick and doesn't seem to hurt anything. */ #include "rtimer-arch.h" { volatile static uint8_t lockcount; volatile static int16_t last_phase; volatile static uint8_t osccalhigh,osccallow; if (seconds < 60) { //give a minute to stabilize if(++lockcount >= 8192UL*128/RTIMER_ARCH_SECOND) { lockcount=0; rtimer_phase = TCNT3 & 0x0fff; if (seconds < 2) OSCCAL=100; if (last_phase > rtimer_phase) osccalhigh=++OSCCAL; else osccallow=--OSCCAL; last_phase = rtimer_phase; } } else { uint8_t error = (TCNT3 - last_phase) & 0x3f; if (error == 0) { } else if (error<32) { OSCCAL=osccallow-1; } else { OSCCAL=osccalhigh+1; } } } #endif #if 1 /* gcc will save all registers on the stack if an external routine is called */ if(etimer_pending()) { etimer_request_poll(); } #else /* doing this locally saves 9 pushes and 9 pops, but these etimer.c and process.c variables have to lose the static qualifier */ extern struct etimer *timerlist; extern volatile unsigned char poll_requested; #define PROCESS_STATE_NONE 0 #define PROCESS_STATE_RUNNING 1 #define PROCESS_STATE_CALLED 2 if (timerlist) { if(etimer_process.state == PROCESS_STATE_RUNNING || etimer_process.state == PROCESS_STATE_CALLED) { etimer_process.needspoll = 1; poll_requested = 1; } } #endif } #endif /* defined(DOXYGEN) */ /*---------------------------------------------------------------------------*/ /* Debugging aids */ #ifdef HANDLE_UNSUPPORTED_INTERRUPTS /* Ignore unsupported interrupts, optionally hang for debugging */ /* BADISR is a gcc weak symbol that matches any undefined interrupt */ ISR(BADISR_vect) { //static volatile uint8_t x;while (1) x++; } #endif #ifdef HANG_ON_UNKNOWN_INTERRUPT /* Hang on any unsupported interrupt */ /* Useful for diagnosing unknown interrupts that reset the mcu. * Currently set up for 12mega128rfa1. * For other mcus, enable all and then disable the conflicts. */ static volatile uint8_t x; ISR( _VECTOR(0)) {while (1) x++;} ISR( _VECTOR(1)) {while (1) x++;} ISR( _VECTOR(2)) {while (1) x++;} ISR( _VECTOR(3)) {while (1) x++;} ISR( _VECTOR(4)) {while (1) x++;} ISR( _VECTOR(5)) {while (1) x++;} ISR( _VECTOR(6)) {while (1) x++;} ISR( _VECTOR(7)) {while (1) x++;} ISR( _VECTOR(8)) {while (1) x++;} ISR( _VECTOR(9)) {while (1) x++;} ISR( _VECTOR(10)) {while (1) x++;} ISR( _VECTOR(11)) {while (1) x++;} ISR( _VECTOR(12)) {while (1) x++;} ISR( _VECTOR(13)) {while (1) x++;} ISR( _VECTOR(14)) {while (1) x++;} ISR( _VECTOR(15)) {while (1) x++;} ISR( _VECTOR(16)) {while (1) x++;} ISR( _VECTOR(17)) {while (1) x++;} ISR( _VECTOR(18)) {while (1) x++;} ISR( _VECTOR(19)) {while (1) x++;} //ISR( _VECTOR(20)) {while (1) x++;} //ISR( _VECTOR(21)) {while (1) x++;} ISR( _VECTOR(22)) {while (1) x++;} ISR( _VECTOR(23)) {while (1) x++;} ISR( _VECTOR(24)) {while (1) x++;} //ISR( _VECTOR(25)) {while (1) x++;} ISR( _VECTOR(26)) {while (1) x++;} //ISR( _VECTOR(27)) {while (1) x++;} ISR( _VECTOR(28)) {while (1) x++;} ISR( _VECTOR(29)) {while (1) x++;} ISR( _VECTOR(30)) {while (1) x++;} ISR( _VECTOR(31)) {while (1) x++;} //ISR( _VECTOR(32)) {while (1) x++;} ISR( _VECTOR(33)) {while (1) x++;} ISR( _VECTOR(34)) {while (1) x++;} ISR( _VECTOR(35)) {while (1) x++;} //ISR( _VECTOR(36)) {while (1) x++;} ISR( _VECTOR(37)) {while (1) x++;} //ISR( _VECTOR(38)) {while (1) x++;} ISR( _VECTOR(39)) {while (1) x++;} ISR( _VECTOR(40)) {while (1) x++;} ISR( _VECTOR(41)) {while (1) x++;} ISR( _VECTOR(42)) {while (1) x++;} ISR( _VECTOR(43)) {while (1) x++;} ISR( _VECTOR(44)) {while (1) x++;} ISR( _VECTOR(45)) {while (1) x++;} ISR( _VECTOR(46)) {while (1) x++;} ISR( _VECTOR(47)) {while (1) x++;} ISR( _VECTOR(48)) {while (1) x++;} ISR( _VECTOR(49)) {while (1) x++;} ISR( _VECTOR(50)) {while (1) x++;} ISR( _VECTOR(51)) {while (1) x++;} ISR( _VECTOR(52)) {while (1) x++;} ISR( _VECTOR(53)) {while (1) x++;} ISR( _VECTOR(54)) {while (1) x++;} ISR( _VECTOR(55)) {while (1) x++;} ISR( _VECTOR(56)) {while (1) x++;} //ISR( _VECTOR(57)) {while (1) x++;} //ISR( _VECTOR(58)) {while (1) x++;} //ISR( _VECTOR(59)) {while (1) x++;} //ISR( _VECTOR(60)) {while (1) x++;} ISR( _VECTOR(61)) {while (1) x++;} ISR( _VECTOR(62)) {while (1) x++;} ISR( _VECTOR(63)) {while (1) x++;} ISR( _VECTOR(64)) {while (1) x++;} ISR( _VECTOR(65)) {while (1) x++;} ISR( _VECTOR(66)) {while (1) x++;} ISR( _VECTOR(67)) {while (1) x++;} ISR( _VECTOR(68)) {while (1) x++;} ISR( _VECTOR(69)) {while (1) x++;} ISR( _VECTOR(70)) {while (1) x++;} ISR( _VECTOR(71)) {while (1) x++;} ISR( _VECTOR(72)) {while (1) x++;} ISR( _VECTOR(73)) {while (1) x++;} ISR( _VECTOR(74)) {while (1) x++;} ISR( _VECTOR(75)) {while (1) x++;} ISR( _VECTOR(76)) {while (1) x++;} ISR( _VECTOR(77)) {while (1) x++;} ISR( _VECTOR(78)) {while (1) x++;} ISR( _VECTOR(79)) {while (1) x++;} #endif /** @} */ /** @} */