/* * Copyright (c) 2009, Swedish Institute of Computer Science * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. * */ /** * \file * Coffee architecture-dependent functionality for the AVR-Raven 1284p platform. * \author * Nicolas Tsiftes <nvt@sics.se> * Frederic Thepaut <frederic.thepaut@inooi.com> * David Kopf <dak664@embarqmail.com> */ #include <avr/boot.h> #include <avr/interrupt.h> #include <avr/pgmspace.h> #include <string.h> #include "cfs-coffee-arch.h" #define DEBUG 0 #if DEBUG #include <stdio.h> #define PRINTF(FORMAT,args...) printf_P(PSTR(FORMAT),##args) #else #define PRINTF(...) #endif #define TESTCOFFEE 1 #define DEBUG_CFS 1 #if TESTCOFFEE #if DEBUG_CFS #include <stdio.h> #define PRINTF_CFS(FORMAT,args...) printf_P(PSTR(FORMAT),##args) #else #define PRINTF_CFS(...) #endif #include "cfs/cfs.h" #include "cfs/cfs-coffee.h" #include "lib/crc16.h" #include "lib/random.h" #include <stdio.h> #define FAIL(x) error = (x); goto end; #define FILE_SIZE 512 int coffee_file_test(void) { int error; int wfd, rfd, afd; unsigned char buf[256], buf2[11]; int r, i, j, total_read; unsigned offset; cfs_remove("T1"); cfs_remove("T2"); cfs_remove("T3"); cfs_remove("T4"); cfs_remove("T5"); wfd = rfd = afd = -1; for(r = 0; r < sizeof(buf); r++) { buf[r] = r; } /* Test 1: Open for writing. */ wfd = cfs_open("T1", CFS_WRITE); if(wfd < 0) { FAIL(-1); } /* Test 2: Write buffer. */ r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-2); } else if(r < sizeof(buf)) { FAIL(-3); } /* Test 3: Deny reading. */ r = cfs_read(wfd, buf, sizeof(buf)); if(r >= 0) { FAIL(-4); } /* Test 4: Open for reading. */ rfd = cfs_open("T1", CFS_READ); if(rfd < 0) { FAIL(-5); } /* Test 5: Write to read-only file. */ r = cfs_write(rfd, buf, sizeof(buf)); if(r >= 0) { FAIL(-6); } /* Test 7: Read the buffer written in Test 2. */ memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-8); } else if(r < sizeof(buf)) { PRINTF_CFS("r=%d\n", r); FAIL(-9); } /* Test 8: Verify that the buffer is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != r) { PRINTF_CFS("r=%d. buf[r]=%d\n", r, buf[r]); FAIL(-10); } } /* Test 9: Seek to beginning. */ if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) { FAIL(-11); } /* Test 10: Write to the log. */ r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-12); } else if(r < sizeof(buf)) { FAIL(-13); } /* Test 11: Read the data from the log. */ cfs_seek(rfd, 0, CFS_SEEK_SET); memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-14); } else if(r < sizeof(buf)) { FAIL(-15); } /* Test 12: Verify that the data is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != r) { FAIL(-16); } } /* Test 13: Write a reversed buffer to the file. */ for(r = 0; r < sizeof(buf); r++) { buf[r] = sizeof(buf) - r - 1; } if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) { FAIL(-17); } r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-18); } else if(r < sizeof(buf)) { FAIL(-19); } if(cfs_seek(rfd, 0, CFS_SEEK_SET) != 0) { FAIL(-20); } /* Test 14: Read the reversed buffer. */ cfs_seek(rfd, 0, CFS_SEEK_SET); memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-21); } else if(r < sizeof(buf)) { PRINTF_CFS("r = %d\n", r); FAIL(-22); } /* Test 15: Verify that the data is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != sizeof(buf) - r - 1) { FAIL(-23); } } cfs_close(rfd); cfs_close(wfd); if(cfs_coffee_reserve("T2", FILE_SIZE) < 0) { FAIL(-24); } /* Test 16: Test multiple writes at random offset. */ for(r = 0; r < 100; r++) { wfd = cfs_open("T2", CFS_WRITE | CFS_READ); if(wfd < 0) { FAIL(-25); } offset = random_rand() % FILE_SIZE; for(r = 0; r < sizeof(buf); r++) { buf[r] = r; } if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) { FAIL(-26); } if(cfs_write(wfd, buf, sizeof(buf)) != sizeof(buf)) { FAIL(-27); } if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) { FAIL(-28); } memset(buf, 0, sizeof(buf)); if(cfs_read(wfd, buf, sizeof(buf)) != sizeof(buf)) { FAIL(-29); } for(i = 0; i < sizeof(buf); i++) { if(buf[i] != i) { PRINTF_CFS("buf[%d] != %d\n", i, buf[i]); FAIL(-30); } } } /* Test 17: Append data to the same file many times. */ #define APPEND_BYTES 3000 #define BULK_SIZE 10 for (i = 0; i < APPEND_BYTES; i += BULK_SIZE) { afd = cfs_open("T3", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-31); } for (j = 0; j < BULK_SIZE; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE)) != BULK_SIZE) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-32); } cfs_close(afd); } /* Test 18: Read back the data written in Test 17 and verify that it is correct. */ afd = cfs_open("T3", CFS_READ); if(afd < 0) { FAIL(-33); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { FAIL(-34); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-35 r=%d\n",r); FAIL(-35); } if(total_read != APPEND_BYTES) { PRINTF_CFS("FAIL:-35 total_read=%d\n",total_read); FAIL(-35); } cfs_close(afd); /***************T4********************/ /* file T4 and T5 writing forces to use garbage collector in greedy mode * this test is designed for 10kb of file system * */ #define APPEND_BYTES_1 2000 #define BULK_SIZE_1 10 for (i = 0; i < APPEND_BYTES_1; i += BULK_SIZE_1) { afd = cfs_open("T4", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-36); } for (j = 0; j < BULK_SIZE_1; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE_1)) != BULK_SIZE_1) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-37); } cfs_close(afd); } afd = cfs_open("T4", CFS_READ); if(afd < 0) { FAIL(-38); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { PRINTF_CFS("FAIL:-39, total_read=%d r=%d\n",total_read,r); FAIL(-39); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-40 r=%d\n",r); FAIL(-40); } if(total_read != APPEND_BYTES_1) { PRINTF_CFS("FAIL:-41 total_read=%d\n",total_read); FAIL(-41); } cfs_close(afd); /***************T5********************/ #define APPEND_BYTES_2 1000 #define BULK_SIZE_2 10 for (i = 0; i < APPEND_BYTES_2; i += BULK_SIZE_2) { afd = cfs_open("T5", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-42); } for (j = 0; j < BULK_SIZE_2; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE_2)) != BULK_SIZE_2) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-43); } cfs_close(afd); } afd = cfs_open("T5", CFS_READ); if(afd < 0) { FAIL(-44); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { PRINTF_CFS("FAIL:-45, total_read=%d r=%d\n",total_read,r); FAIL(-45); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-46 r=%d\n",r); FAIL(-46); } if(total_read != APPEND_BYTES_2) { PRINTF_CFS("FAIL:-47 total_read=%d\n",total_read); FAIL(-47); } cfs_close(afd); error = 0; end: cfs_close(wfd); cfs_close(rfd); cfs_close(afd); return error; } #endif /* TESTCOFFEE */ /*---------------------------------------------------------------------------*/ /*---------------------------EEPROM ROUTINES---------------------------------*/ /*---------------------------------------------------------------------------*/ #ifdef COFFEE_AVR_EEPROM /* Letting .bss initialize nullb to zero saves COFFEE_SECTOR_SIZE of flash */ //static const unsigned char nullb[COFFEE_SECTOR_SIZE] = {0}; static const unsigned char nullb[COFFEE_SECTOR_SIZE]; /*---------------------------------------------------------------------------*/ /* Erase EEPROM sector */ void avr_eeprom_erase(uint16_t sector) { eeprom_write(COFFEE_START + sector * COFFEE_SECTOR_SIZE, (unsigned char *)nullb, sizeof(nullb)); } #endif /* COFFEE_AVR_EEPROM */ #ifdef COFFEE_AVR_FLASH /*---------------------------------------------------------------------------*/ /*---------------------------FLASH ROUTINES----------------------------------*/ /*---------------------------------------------------------------------------*/ /* * Read from flash info buf. addr contains starting flash byte address */ void avr_flash_read(CFS_CONF_OFFSET_TYPE addr, uint8_t *buf, CFS_CONF_OFFSET_TYPE size) { uint32_t addr32=COFFEE_START+addr; uint16_t isize=size; #if DEBUG unsigned char *bufo=(unsigned char *)buf; uint8_t i; uint16_t w=addr32>>1; //Show progmem word address for debug PRINTF("r0x%04x(%u) ",w,size); #endif #ifndef FLASH_WORD_READS for (;isize>0;isize--) { #if FLASH_COMPLEMENT_DATA *buf++=~(uint8_t)pgm_read_byte_far(addr32++); #else *buf++=(uint8_t)pgm_read_byte_far(addr32++); #endif /*FLASH_COMPLEMENT_DATA*/ } #else /* 130 bytes more PROGMEM, but faster */ if (isize&0x01) { //handle first odd byte #if FLASH_COMPLEMENT_DATA *buf++=~(uint8_t)pgm_read_byte_far(addr32++); #else *buf++=(uint8_t)pgm_read_byte_far(addr32++); #endif /*FLASH_COMPLEMENT_DATA*/ isize--; } for (;isize>1;isize-=2) {//read words from flash #if FLASH_COMPLEMENT_DATA *(uint16_t *)buf=~(uint16_t)pgm_read_word_far(addr32); #else *(uint16_t *)buf=(uint16_t)pgm_read_word_far(addr32); #endif /*FLASH_COMPLEMENT_DATA*/ buf+=2; addr32+=2; } if (isize) { //handle last odd byte #if FLASH_COMPLEMENT_DATA *buf++=~(uint8_t)pgm_read_byte_far(addr32); #else *buf++=(uint8_t)pgm_read_byte_far(addr32); #endif /*FLASH_COMPLEMENT_DATA*/ } #endif /* FLASH_WORD_READS */ #if DEBUG>1 PRINTF("\nbuf="); // PRINTF("%s",bufo); // for (i=0;i<16;i++) PRINTF("%2x ",*bufo++); #endif } /*---------------------------------------------------------------------------*/ /* Erase the flash page(s) corresponding to the coffee sector. This is done by calling the write routine with a null buffer and any address within each page of the sector (we choose the first byte). */ BOOTLOADER_SECTION void avr_flash_erase(coffee_page_t sector) { coffee_page_t i; #if FLASH_COMPLEMENT_DATA uint32_t addr32; volatile uint8_t sreg; // Disable interrupts. sreg = SREG; cli(); for (i = 0; i < COFFEE_SECTOR_SIZE / COFFEE_PAGE_SIZE; i++) { for (addr32 = COFFEE_START + (((sector + i) * COFFEE_PAGE_SIZE) & ~(COFFEE_PAGE_SIZE - 1)); addr32 < (COFFEE_START + (((sector + i + 1) * COFFEE_PAGE_SIZE) & ~(COFFEE_PAGE_SIZE - 1))); addr32 += SPM_PAGESIZE) { boot_page_erase(addr32); boot_spm_busy_wait(); } } //RE-enable interrupts boot_rww_enable(); SREG = sreg; #else for (i=0;i<COFFEE_SECTOR_SIZE/COFFEE_PAGE_SIZE;i++) { avr_flash_write((sector+i)*COFFEE_PAGE_SIZE,0,0); } #endif #if 0 #if TESTCOFFEE /* Defining TESTCOFFEE is a convenient way of testing a new configuration. * It is triggered by an erase of the last sector. * Note this routine will be reentered during the test! */ if ((sector+i)==COFFEE_PAGES-1) { int j=(int)(COFFEE_START>>1),k=(int)((COFFEE_START>>1)+(COFFEE_SIZE>>1)),l=(int)(COFFEE_SIZE/1024UL); printf_P(PSTR("\nTesting coffee filesystem [0x%08x -> 0x%08x (%uKb)] ..."),j,k,l); int r= coffee_file_test(); if (r<0) { printf_P(PSTR("\nFailed with return %d! :-(\n"),r); } else { printf_P(PSTR("Passed! :-)\n")); } } #endif /* TESTCOFFEE */ #endif } /*httpd-fs routines getchar is straigtforward. strcmp only needs to handle file names for fs_open. Note filename in buf will not be zero terminated if it fills the coffee name field, so a pseudo strcmp is done here. strchr searches for script starts so must handle arbitrarily large strings */ char avr_httpd_fs_getchar(char *addr) { char r; avr_flash_read((CFS_CONF_OFFSET_TYPE) addr, (uint8_t*) &r, 1); return r; } int avr_httpd_fs_strcmp (char *ram, char *addr) { uint8_t i,*in,buf[32]; avr_flash_read((CFS_CONF_OFFSET_TYPE)addr, buf, sizeof(buf)); //return strcmp(ram, (char *)buf); in=(uint8_t *)ram; for (i=0;i<32;i++) { if (buf[i]==0) return(0); if (buf[i]!=*in) break; in++; } /* A proper strcmp would return a + or minus number based on the last comparison*/ //if (buf[i]>*in) return(i); else return(-i); return(i); } char * avr_httpd_fs_strchr (char *addr, int character) { char buf[129],*pptr; buf[128]=character; while (1) { avr_flash_read((CFS_CONF_OFFSET_TYPE)addr, (uint8_t *) buf, 128); pptr=strchr(buf, character); if (pptr!=&buf[128]) { if (pptr==0) return 0; return (addr+(pptr-buf)); } addr+=128; } } /*---------------------------------------------------------------------------*/ /* * Transfer buf[size] from RAM to flash, starting at addr. * If buf is null, just erase the flash page * Note this routine has to be in the bootloader NRWW part of program memory, * and that writing to NRWW (last 32 pages on the 1284p) will halt the CPU. */ BOOTLOADER_SECTION void avr_flash_write(CFS_CONF_OFFSET_TYPE addr, uint8_t *buf, CFS_CONF_OFFSET_TYPE size) { uint32_t addr32; uint16_t w; uint8_t bb,ba,sreg; /* Disable interrupts, make sure no eeprom write in progress */ sreg = SREG; cli(); eeprom_busy_wait(); /* Calculate the starting address of the first flash page being modified (will be on a page boundary) and the number of unaltered bytes before and after the data to be written. */ #if 0 //this is 8 bytes longer uint16_t startpage=addr/COFFEE_PAGE_SIZE; addr32=COFFEE_START+startpage*COFFEE_PAGE_SIZE; #else addr32=(COFFEE_ADDRESS&~(SPM_PAGESIZE-1))+(addr&~(SPM_PAGESIZE-1)); #endif bb=addr & (SPM_PAGESIZE-1); ba=COFFEE_PAGE_SIZE-((addr+size)&0xff); #if DEBUG uint16_t startpage=addr/COFFEE_PAGE_SIZE; w=addr32>>1; //Show progmem word address for debug if (buf) { PRINTF("w0x%04x %u %u %u",w,size,bb,ba); } else { PRINTF("e0x%04x %u ",w,startpage); } #endif /* If buf not null, modify the page(s) */ if (buf) { if (size==0) return; //nothing to write /*Copy the first part of the existing page into the write buffer */ while (bb>1) { w=pgm_read_word_far(addr32); boot_page_fill(addr32,w); addr32+=2; bb-=2; } /* Transfer the bytes to be modified */ while (size>1) { if (bb) { //handle odd byte boundary w=pgm_read_word_far(addr32); #if FLASH_COMPLEMENT_DATA w = ~w; #endif /*FLASH_COMPLEMENT_DATA*/ w &= 0xff; bb=0; size++; } else { w = *buf++; } w += (*buf++) << 8; #if FLASH_COMPLEMENT_DATA w = ~w; #endif /*FLASH_COMPLEMENT_DATA*/ boot_page_fill(addr32, w); size-=2; /* Below ought to work but writing to 0xnnnnnnfe modifies the NEXT flash page for some reason, at least in the AVR Studio simulator. if ((addr32&0x000000ff)==0x000000fe) { //handle page boundary if (size) { boot_page_erase(addr32); boot_spm_busy_wait(); boot_page_write(addr32); boot_spm_busy_wait(); } } addr32+=2; */ /* This works...*/ addr32+=2; if ((addr32&0x000000ff)==0) { //handle page boundary if (size) { addr32-=0x42; //get an address within the page boot_page_erase(addr32); boot_spm_busy_wait(); boot_page_write(addr32); boot_spm_busy_wait(); addr32+=0x42; } } } /* Copy the remainder of the existing page */ while (ba>1) { w=pgm_read_word_far(addr32); if (size) { //handle odd byte boundary w &= 0xff00; #if FLASH_COMPLEMENT_DATA w +=~(*buf); #else w +=*buf; #endif /*FLASH_COMPLEMENT_DATA*/ size=0; } boot_page_fill(addr32,w); addr32+=2; ba-=2; } /* If buf is null, erase the page to zero */ } else { #if FLASH_COMPLEMENT_DATA addr32+=2*SPM_PAGESIZE; #else for (w=0;w<SPM_PAGESIZE;w++) { boot_page_fill(addr32, 0); addr32+=2; } #endif /*FLASH_COMPLEMENT_DATA*/ } /* Write the last (or only) page */ addr32-=0x42; //get an address within the page boot_page_erase(addr32); boot_spm_busy_wait(); #if FLASH_COMPLEMENT_DATA if (buf) { //don't write zeroes to erased page boot_page_write(addr32); boot_spm_busy_wait(); } #else boot_page_write(addr32); boot_spm_busy_wait(); #endif /*FLASH_COMPLEMENT_DATA*/ /* Reenable RWW-section again. We need this if we want to jump back * to the application after bootloading. */ boot_rww_enable(); /* Re-enable interrupts (if they were ever enabled). */ SREG = sreg; } #endif /* COFFEE_AVR_FLASH */