/** * MFRC522.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. * Based on code Dr.Leong ( WWW.B2CQSHOP.COM ) * Created by Miguel Balboa (circuitito.com), Jan, 2012. * Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.) * Extended by Tom Clement with functionality to write to sector 0 of UID changeable Mifare cards. * Released into the public domain. * * Please read this file for an overview and then MFRC522.cpp for comments on the specific functions. * Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board. * * There are three hardware components involved: * 1) The micro controller: An Arduino * 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC * 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203. * * The microcontroller and card reader uses SPI for communication. * The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf * * The card reader and the tags communicate using a 13.56MHz electromagnetic field. * The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision". * A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf * Details are found in chapter 6, Type A – Initialization and anticollision. * * If only the PICC UID is wanted, the above documents has all the needed information. * To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected. * The MIFARE Classic chips and protocol is described in the datasheets: * 1K: http://www.mouser.com/ds/2/302/MF1S503x-89574.pdf * 4K: http://datasheet.octopart.com/MF1S7035DA4,118-NXP-Semiconductors-datasheet-11046188.pdf * Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf * The MIFARE Ultralight chip and protocol is described in the datasheets: * Ultralight: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf * Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf * * MIFARE Classic 1K (MF1S503x): * Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes. * The blocks are numbered 0-63. * Block 3 in each sector is the Sector Trailer. See http://www.mouser.com/ds/2/302/MF1S503x-89574.pdf sections 8.6 and 8.7: * Bytes 0-5: Key A * Bytes 6-8: Access Bits * Bytes 9: User data * Bytes 10-15: Key B (or user data) * Block 0 is read-only manufacturer data. * To access a block, an authentication using a key from the block's sector must be performed first. * Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11). * All keys are set to FFFFFFFFFFFFh at chip delivery. * Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked. * To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns. * MIFARE Classic 4K (MF1S703x): * Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes. * The blocks are numbered 0-255. * The last block in each sector is the Sector Trailer like above. * MIFARE Classic Mini (MF1 IC S20): * Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. * The blocks are numbered 0-19. * The last block in each sector is the Sector Trailer like above. * * MIFARE Ultralight (MF0ICU1): * Has 16 pages of 4 bytes = 64 bytes. * Pages 0 + 1 is used for the 7-byte UID. * Page 2 contains the last check digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. * Pages 4-15 are read/write unless blocked by the lock bytes in page 2. * MIFARE Ultralight C (MF0ICU2): * Has 48 pages of 4 bytes = 192 bytes. * Pages 0 + 1 is used for the 7-byte UID. * Page 2 contains the last check digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. * Pages 4-39 are read/write unless blocked by the lock bytes in page 2. * Page 40 Lock bytes * Page 41 16 bit one way counter * Pages 42-43 Authentication configuration * Pages 44-47 Authentication key */ #ifndef MFRC522_h #define MFRC522_h #include #include // Firmware data for self-test // Reference values based on firmware version // Hint: if needed, you can remove unused self-test data to save flash memory // // Version 0.0 (0x90) // Philips Semiconductors; Preliminary Specification Revision 2.0 - 01 August 2005; 16.1 self-test const byte MFRC522_firmware_referenceV0_0[] PROGMEM = { 0x00, 0x87, 0x98, 0x0f, 0x49, 0xFF, 0x07, 0x19, 0xBF, 0x22, 0x30, 0x49, 0x59, 0x63, 0xAD, 0xCA, 0x7F, 0xE3, 0x4E, 0x03, 0x5C, 0x4E, 0x49, 0x50, 0x47, 0x9A, 0x37, 0x61, 0xE7, 0xE2, 0xC6, 0x2E, 0x75, 0x5A, 0xED, 0x04, 0x3D, 0x02, 0x4B, 0x78, 0x32, 0xFF, 0x58, 0x3B, 0x7C, 0xE9, 0x00, 0x94, 0xB4, 0x4A, 0x59, 0x5B, 0xFD, 0xC9, 0x29, 0xDF, 0x35, 0x96, 0x98, 0x9E, 0x4F, 0x30, 0x32, 0x8D }; // Version 1.0 (0x91) // NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 self-test const byte MFRC522_firmware_referenceV1_0[] PROGMEM = { 0x00, 0xC6, 0x37, 0xD5, 0x32, 0xB7, 0x57, 0x5C, 0xC2, 0xD8, 0x7C, 0x4D, 0xD9, 0x70, 0xC7, 0x73, 0x10, 0xE6, 0xD2, 0xAA, 0x5E, 0xA1, 0x3E, 0x5A, 0x14, 0xAF, 0x30, 0x61, 0xC9, 0x70, 0xDB, 0x2E, 0x64, 0x22, 0x72, 0xB5, 0xBD, 0x65, 0xF4, 0xEC, 0x22, 0xBC, 0xD3, 0x72, 0x35, 0xCD, 0xAA, 0x41, 0x1F, 0xA7, 0xF3, 0x53, 0x14, 0xDE, 0x7E, 0x02, 0xD9, 0x0F, 0xB5, 0x5E, 0x25, 0x1D, 0x29, 0x79 }; // Version 2.0 (0x92) // NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 self-test const byte MFRC522_firmware_referenceV2_0[] PROGMEM = { 0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, 0xD0, 0xE3, 0x0D, 0x3D, 0x27, 0x89, 0x5C, 0xDE, 0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B, 0x89, 0x82, 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49, 0x7C, 0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, 0x5D, 0x48, 0x76, 0xD5, 0x71, 0x61, 0x21, 0xA9, 0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B, 0x6D, 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F }; // Clone // Fudan Semiconductor FM17522 (0x88) const byte FM17522_firmware_reference[] PROGMEM = { 0x00, 0xD6, 0x78, 0x8C, 0xE2, 0xAA, 0x0C, 0x18, 0x2A, 0xB8, 0x7A, 0x7F, 0xD3, 0x6A, 0xCF, 0x0B, 0xB1, 0x37, 0x63, 0x4B, 0x69, 0xAE, 0x91, 0xC7, 0xC3, 0x97, 0xAE, 0x77, 0xF4, 0x37, 0xD7, 0x9B, 0x7C, 0xF5, 0x3C, 0x11, 0x8F, 0x15, 0xC3, 0xD7, 0xC1, 0x5B, 0x00, 0x2A, 0xD0, 0x75, 0xDE, 0x9E, 0x51, 0x64, 0xAB, 0x3E, 0xE9, 0x15, 0xB5, 0xAB, 0x56, 0x9A, 0x98, 0x82, 0x26, 0xEA, 0x2A, 0x62 }; class MFRC522 { public: // MFRC522 registers. Described in chapter 9 of the datasheet. // When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3) enum PCD_Register { // Page 0: Command and status // 0x00 // reserved for future use CommandReg = 0x01 << 1, // starts and stops command execution ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits ComIrqReg = 0x04 << 1, // interrupt request bits DivIrqReg = 0x05 << 1, // interrupt request bits ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed Status1Reg = 0x07 << 1, // communication status bits Status2Reg = 0x08 << 1, // receiver and transmitter status bits FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning ControlReg = 0x0C << 1, // miscellaneous control registers BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface // 0x0F // reserved for future use // Page 1: Command // 0x10 // reserved for future use ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving TxModeReg = 0x12 << 1, // defines transmission data rate and framing RxModeReg = 0x13 << 1, // defines reception data rate and framing TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2 TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver RxSelReg = 0x17 << 1, // selects internal receiver settings RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder DemodReg = 0x19 << 1, // defines demodulator settings // 0x1A // reserved for future use // 0x1B // reserved for future use MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters // 0x1E // reserved for future use SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface // Page 2: Configuration // 0x20 // reserved for future use CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation CRCResultRegL = 0x22 << 1, // 0x23 // reserved for future use ModWidthReg = 0x24 << 1, // controls the ModWidth setting? // 0x25 // reserved for future use RFCfgReg = 0x26 << 1, // configures the receiver gain GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation TModeReg = 0x2A << 1, // defines settings for the internal timer TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg. TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value TReloadRegL = 0x2D << 1, TCounterValueRegH = 0x2E << 1, // shows the 16-bit timer value TCounterValueRegL = 0x2F << 1, // Page 3: Test Registers // 0x30 // reserved for future use TestSel1Reg = 0x31 << 1, // general test signal configuration TestSel2Reg = 0x32 << 1, // general test signal configuration TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7 TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus TestBusReg = 0x35 << 1, // shows the status of the internal test bus AutoTestReg = 0x36 << 1, // controls the digital self-test VersionReg = 0x37 << 1, // shows the software version AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2 TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1 TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2 TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels // 0x3C // reserved for production tests // 0x3D // reserved for production tests // 0x3E // reserved for production tests // 0x3F // reserved for production tests }; // MFRC522 commands. Described in chapter 10 of the datasheet. enum PCD_Command { PCD_Idle = 0x00, // no action, cancels current command execution PCD_Mem = 0x01, // stores 25 bytes into the internal buffer PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self-test PCD_Transmit = 0x04, // transmits data from the FIFO buffer PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit PCD_Receive = 0x08, // activates the receiver circuits PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader PCD_SoftReset = 0x0F // resets the MFRC522 }; // MFRC522 RxGain[2:0] masks, defines the receiver's signal voltage gain factor (on the PCD). // Described in 9.3.3.6 / table 98 of the datasheet at http://www.nxp.com/documents/data_sheet/MFRC522.pdf enum PCD_RxGain { RxGain_18dB = 0x00 << 4, // 000b - 18 dB, minimum RxGain_23dB = 0x01 << 4, // 001b - 23 dB RxGain_18dB_2 = 0x02 << 4, // 010b - 18 dB, it seems 010b is a duplicate for 000b RxGain_23dB_2 = 0x03 << 4, // 011b - 23 dB, it seems 011b is a duplicate for 001b RxGain_33dB = 0x04 << 4, // 100b - 33 dB, average, and typical default RxGain_38dB = 0x05 << 4, // 101b - 38 dB RxGain_43dB = 0x06 << 4, // 110b - 43 dB RxGain_48dB = 0x07 << 4, // 111b - 48 dB, maximum RxGain_min = 0x00 << 4, // 000b - 18 dB, minimum, convenience for RxGain_18dB RxGain_avg = 0x04 << 4, // 100b - 33 dB, average, convenience for RxGain_33dB RxGain_max = 0x07 << 4 // 111b - 48 dB, maximum, convenience for RxGain_48dB }; // Commands sent to the PICC. enum PICC_Command { // The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4) PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision. PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1 PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 2 PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 3 PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT. // The commands used for MIFARE Classic (from http://www.mouser.com/ds/2/302/MF1S503x-89574.pdf, Section 9) // Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector. // The read/write commands can also be used for MIFARE Ultralight. PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight. PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight. PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register. PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register. PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register. PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block. // The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6) // The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight. PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC. }; // MIFARE constants that does not fit anywhere else enum MIFARE_Misc { MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK. MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes. }; // PICC types we can detect. Remember to update PICC_GetTypeName() if you add more. // last value set to 0xff, then compiler uses less ram, it seems some optimisations are triggered enum PICC_Type : byte { PICC_TYPE_UNKNOWN , PICC_TYPE_ISO_14443_4 , // PICC compliant with ISO/IEC 14443-4 PICC_TYPE_ISO_18092 , // PICC compliant with ISO/IEC 18092 (NFC) PICC_TYPE_MIFARE_MINI , // MIFARE Classic protocol, 320 bytes PICC_TYPE_MIFARE_1K , // MIFARE Classic protocol, 1KB PICC_TYPE_MIFARE_4K , // MIFARE Classic protocol, 4KB PICC_TYPE_MIFARE_UL , // MIFARE Ultralight or Ultralight C PICC_TYPE_MIFARE_PLUS , // MIFARE Plus PICC_TYPE_TNP3XXX , // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure PICC_TYPE_NOT_COMPLETE = 0xff // SAK indicates UID is not complete. }; // Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more. // last value set to 0xff, then compiler uses less ram, it seems some optimisations are triggered enum StatusCode : byte { STATUS_OK , // Success STATUS_ERROR , // Error in communication STATUS_COLLISION , // Collission detected STATUS_TIMEOUT , // Timeout in communication. STATUS_NO_ROOM , // A buffer is not big enough. STATUS_INTERNAL_ERROR , // Internal error in the code. Should not happen ;-) STATUS_INVALID , // Invalid argument. STATUS_CRC_WRONG , // The CRC_A does not match STATUS_MIFARE_NACK = 0xff // A MIFARE PICC responded with NAK. }; // A struct used for passing the UID of a PICC. typedef struct { byte size; // Number of bytes in the UID. 4, 7 or 10. byte uidByte[10]; byte sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection. } Uid; // A struct used for passing a MIFARE Crypto1 key typedef struct { byte keyByte[MF_KEY_SIZE]; } MIFARE_Key; // Member variables Uid uid; // Used by PICC_ReadCardSerial(). // Size of the MFRC522 FIFO static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes. ///////////////////////////////////////////////////////////////////////////////////// // Functions for setting up the Arduino ///////////////////////////////////////////////////////////////////////////////////// MFRC522(); MFRC522(byte resetPowerDownPin); MFRC522(byte chipSelectPin, byte resetPowerDownPin); ///////////////////////////////////////////////////////////////////////////////////// // Basic interface functions for communicating with the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// void PCD_WriteRegister(byte reg, byte value); void PCD_WriteRegister(byte reg, byte count, byte *values); byte PCD_ReadRegister(byte reg); void PCD_ReadRegister(byte reg, byte count, byte *values, byte rxAlign = 0); void setBitMask(unsigned char reg, unsigned char mask); void PCD_SetRegisterBitMask(byte reg, byte mask); void PCD_ClearRegisterBitMask(byte reg, byte mask); StatusCode PCD_CalculateCRC(byte *data, byte length, byte *result); ///////////////////////////////////////////////////////////////////////////////////// // Functions for manipulating the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// void PCD_Init(); void PCD_Init(byte resetPowerDownPin); void PCD_Init(byte chipSelectPin, byte resetPowerDownPin); void PCD_Reset(); void PCD_AntennaOn(); void PCD_AntennaOff(); byte PCD_GetAntennaGain(); void PCD_SetAntennaGain(byte mask); bool PCD_PerformSelfTest(); ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with PICCs ///////////////////////////////////////////////////////////////////////////////////// StatusCode PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false); StatusCode PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData, byte sendLen, byte *backData = NULL, byte *backLen = NULL, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false); StatusCode PICC_RequestA(byte *bufferATQA, byte *bufferSize); StatusCode PICC_WakeupA(byte *bufferATQA, byte *bufferSize); StatusCode PICC_REQA_or_WUPA(byte command, byte *bufferATQA, byte *bufferSize); StatusCode PICC_Select(Uid *uid, byte validBits = 0); StatusCode PICC_HaltA(); ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with MIFARE PICCs ///////////////////////////////////////////////////////////////////////////////////// StatusCode PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key, Uid *uid); void PCD_StopCrypto1(); StatusCode MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize); StatusCode MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize); StatusCode MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize); StatusCode MIFARE_Decrement(byte blockAddr, long delta); StatusCode MIFARE_Increment(byte blockAddr, long delta); StatusCode MIFARE_Restore(byte blockAddr); StatusCode MIFARE_Transfer(byte blockAddr); StatusCode MIFARE_GetValue(byte blockAddr, long *value); StatusCode MIFARE_SetValue(byte blockAddr, long value); StatusCode PCD_NTAG216_AUTH(byte *passWord, byte pACK[]); ///////////////////////////////////////////////////////////////////////////////////// // Support functions ///////////////////////////////////////////////////////////////////////////////////// StatusCode PCD_MIFARE_Transceive(byte *sendData, byte sendLen, bool acceptTimeout = false); // old function used too much memory, now name moved to flash; if you need char, copy from flash to memory //const char *GetStatusCodeName(byte code); static const __FlashStringHelper *GetStatusCodeName(StatusCode code); static PICC_Type PICC_GetType(byte sak); // old function used too much memory, now name moved to flash; if you need char, copy from flash to memory //const char *PICC_GetTypeName(byte type); static const __FlashStringHelper *PICC_GetTypeName(PICC_Type type); // Support functions for debuging void PCD_DumpVersionToSerial(); void PICC_DumpToSerial(Uid *uid); void PICC_DumpDetailsToSerial(Uid *uid); void PICC_DumpMifareClassicToSerial(Uid *uid, PICC_Type piccType, MIFARE_Key *key); void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key, byte sector); void PICC_DumpMifareUltralightToSerial(); // Advanced functions for MIFARE void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2, byte g3); bool MIFARE_OpenUidBackdoor(bool logErrors); bool MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors); bool MIFARE_UnbrickUidSector(bool logErrors); ///////////////////////////////////////////////////////////////////////////////////// // Convenience functions - does not add extra functionality ///////////////////////////////////////////////////////////////////////////////////// bool PICC_IsNewCardPresent(); bool PICC_ReadCardSerial(); private: byte _chipSelectPin; // Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low) byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low) StatusCode MIFARE_TwoStepHelper(byte command, byte blockAddr, long data); }; #endif