/* Copyright (c) 2008, Swedish Institute of Computer Science * All rights reserved. * * Additional fixes for AVR contributed by: * * Colin O'Flynn coflynn@newae.com * Eric Gnoske egnoske@gmail.com * Blake Leverett bleverett@gmail.com * Mike Vidales mavida404@gmail.com * Kevin Brown kbrown3@uccs.edu * Nate Bohlmann nate@elfwerks.com * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \addtogroup hal * @{ */ /** * \file * \brief This file contains low-level radio driver code. * * $Id: hal.h,v 1.4 2008/11/29 15:55:02 c_oflynn Exp $ */ #ifndef HAL_AVR_H #define HAL_AVR_H /*============================ INCLUDE =======================================*/ #include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include <avr/interrupt.h> #include <util/crc16.h> #include "contiki-conf.h" /*============================ MACROS ========================================*/ // TEST CODE #define TRIG1 DDRB |= 0x04, PINB |= 0x04 #define TRIG2 DDRD |= 0x80, PIND |= 0x80 /** \name This is the list of pin configurations needed for a given platform. * \brief Change these values to port to other platforms. * \{ */ /* Define all possible revisions here */ // RAVEN_D : Raven kit with LCD display // RAVENUSB_C : used for USB key or Raven card // RCB_B : RZ200 kit from Atmel based on 1281V // ZIGBIT : Zigbit module from Meshnetics #define RAVEN_D 0 #define RAVENUSB_C 1 #define RCB_B 2 #define ZIGBIT 3 #if RCB_REVISION == RCB_B /* 1281 rcb */ # define SSPORT B # define SSPIN (0x00) # define SPIPORT B # define MOSIPIN (0x02) # define MISOPIN (0x03) # define SCKPIN (0x01) # define RSTPORT B # define RSTPIN (0x05) # define IRQPORT D # define IRQPIN (0x04) # define SLPTRPORT B # define SLPTRPIN (0x04) # define USART 1 # define USARTVECT USART1_RX_vect # define TICKTIMER 3 # define HAS_SPARE_TIMER #elif HARWARE_REVISION == ZIGBIT /* 1281V Zigbit */ # define SSPORT B # define SSPIN (0x00) # define SPIPORT B # define MOSIPIN (0x02) # define MISOPIN (0x03) # define SCKPIN (0x01) # define RSTPORT A # define RSTPIN (0x07) # define IRQPORT E # define IRQPIN (0x05) # define SLPTRPORT B # define SLPTRPIN (0x04) # define TXCWPORT B # define TXCWPIN (0x07) # define USART 1 # define USARTVECT USART1_RX_vect //# define TICKTIMER 3 //# define HAS_SPARE_TIMER // Not used #elif RAVEN_REVISION == RAVEN_D /* 1284 raven */ # define SSPORT B # define SSPIN (0x04) # define SPIPORT B # define MOSIPIN (0x05) # define MISOPIN (0x06) # define SCKPIN (0x07) # define RSTPORT B # define RSTPIN (0x01) # define IRQPORT D # define IRQPIN (0x06) # define SLPTRPORT B # define SLPTRPIN (0x03) # define TXCWPORT B # define TXCWPIN (0x00) # define USART 1 # define USARTVECT USART1_RX_vect # define TICKTIMER 3 # define HAS_CW_MODE # define HAS_SPARE_TIMER #elif RAVEN_REVISION == RAVENUSB_C /* 1287USB raven */ # define SSPORT B # define SSPIN (0x00) # define SPIPORT B # define MOSIPIN (0x02) # define MISOPIN (0x03) # define SCKPIN (0x01) # define RSTPORT B # define RSTPIN (0x05) # define IRQPORT D # define IRQPIN (0x04) # define SLPTRPORT B # define SLPTRPIN (0x04) # define TXCWPORT B # define TXCWPIN (0x07) # define USART 1 # define USARTVECT USART1_RX_vect # define TICKTIMER 3 # define HAS_CW_MODE # define HAS_SPARE_TIMER #else #error "Platform undefined in hal.h" #endif /** \} */ /** * \name Macros used to generate read register names from platform-specific definitions of ports. * \brief The various CAT macros (DDR, PORT, and PIN) are used to * assign port/pin/DDR names to various macro variables. The * variables are assigned based on the specific connections made in * the hardware. For example TCCR(TICKTIMER,A) can be used in place of TCCR0A * if TICKTIMER is defined as 0. * \{ */ #define CAT(x, y) x##y #define CAT2(x, y, z) x##y##z #define DDR(x) CAT(DDR, x) #define PORT(x) CAT(PORT, x) #define PIN(x) CAT(PIN, x) #define UCSR(num, let) CAT2(UCSR,num,let) #define RXEN(x) CAT(RXEN,x) #define TXEN(x) CAT(TXEN,x) #define TXC(x) CAT(TXC,x) #define RXC(x) CAT(RXC,x) #define RXCIE(x) CAT(RXCIE,x) #define UCSZ(x,y) CAT2(UCSZ,x,y) #define UBRR(x,y) CAT2(UBRR,x,y) #define UDRE(x) CAT(UDRE,x) #define UDRIE(x) CAT(UDRIE,x) #define UDR(x) CAT(UDR,x) #define TCNT(x) CAT(TCNT,x) #define TIMSK(x) CAT(TIMSK,x) #define TCCR(x,y) CAT2(TCCR,x,y) #define COM(x,y) CAT2(COM,x,y) #define OCR(x,y) CAT2(OCR,x,y) #define CS(x,y) CAT2(CS,x,y) #define WGM(x,y) CAT2(WGM,x,y) #define OCIE(x,y) CAT2(OCIE,x,y) #define COMPVECT(x) CAT2(TIMER,x,_COMPA_vect) #define UDREVECT(x) CAT2(USART,x,_UDRE_vect) #define RXVECT(x) CAT2(USART,x,_RX_vect) /** \} */ /** * \name Pin macros * \brief These macros convert the platform-specific pin defines into names and functions * that the source code can directly use. * \{ */ #define SLP_TR SLPTRPIN /**< Pin number that corresponds to the SLP_TR pin. */ #define DDR_SLP_TR DDR( SLPTRPORT ) /**< Data Direction Register that corresponds to the port where SLP_TR is connected. */ #define PORT_SLP_TR PORT( SLPTRPORT ) /**< Port (Write Access) where SLP_TR is connected. */ #define PIN_SLP_TR PIN( SLPTRPORT ) /**< Pin (Read Access) where SLP_TR is connected. */ #define hal_set_slptr_high( ) ( PORT_SLP_TR |= ( 1 << SLP_TR ) ) /**< This macro pulls the SLP_TR pin high. */ #define hal_set_slptr_low( ) ( PORT_SLP_TR &= ~( 1 << SLP_TR ) ) /**< This macro pulls the SLP_TR pin low. */ #define hal_get_slptr( ) ( ( PIN_SLP_TR & ( 1 << SLP_TR ) ) >> SLP_TR ) /**< Read current state of the SLP_TR pin (High/Low). */ #define RST RSTPIN /**< Pin number that corresponds to the RST pin. */ #define DDR_RST DDR( RSTPORT ) /**< Data Direction Register that corresponds to the port where RST is */ #define PORT_RST PORT( RSTPORT ) /**< Port (Write Access) where RST is connected. */ #define PIN_RST PIN( RSTPORT ) /**< Pin (Read Access) where RST is connected. */ #define hal_set_rst_high( ) ( PORT_RST |= ( 1 << RST ) ) /**< This macro pulls the RST pin high. */ #define hal_set_rst_low( ) ( PORT_RST &= ~( 1 << RST ) ) /**< This macro pulls the RST pin low. */ #define hal_get_rst( ) ( ( PIN_RST & ( 1 << RST ) ) >> RST ) /**< Read current state of the RST pin (High/Low). */ #define HAL_SS_PIN SSPIN /**< The slave select pin. */ #define HAL_PORT_SPI PORT( SPIPORT ) /**< The SPI module is located on PORTB. */ #define HAL_DDR_SPI DDR( SPIPORT ) /**< Data Direction Register for PORTB. */ #define HAL_DD_SS SSPIN /**< Data Direction bit for SS. */ #define HAL_DD_SCK SCKPIN /**< Data Direction bit for SCK. */ #define HAL_DD_MOSI MOSIPIN /**< Data Direction bit for MOSI. */ #define HAL_DD_MISO MISOPIN /**< Data Direction bit for MISO. */ /** \} */ #define HAL_SS_HIGH( ) (HAL_PORT_SPI |= ( 1 << HAL_SS_PIN )) /**< MACRO for pulling SS high. */ #define HAL_SS_LOW( ) (HAL_PORT_SPI &= ~( 1 << HAL_SS_PIN )) /**< MACRO for pulling SS low. */ /** \brief Macros defined for HAL_TIMER1. * * These macros are used to define the correct setupt of the AVR's Timer1, and * to ensure that the hal_get_system_time function returns the system time in * symbols (16 us ticks). */ #if ( F_CPU == 16000000UL ) #define HAL_TCCR1B_CONFIG ( ( 1 << ICES1 ) | ( 1 << CS12 ) ) #define HAL_US_PER_SYMBOL ( 1 ) #define HAL_SYMBOL_MASK ( 0xFFFFffff ) #elif ( F_CPU == 8000000UL ) #define HAL_TCCR1B_CONFIG ( ( 1 << ICES1 ) | ( 1 << CS11 ) | ( 1 << CS10 ) ) #define HAL_US_PER_SYMBOL ( 2 ) #define HAL_SYMBOL_MASK ( 0x7FFFffff ) #elif ( F_CPU == 4000000UL ) #define HAL_TCCR1B_CONFIG ( ( 1 << ICES1 ) | ( 1 << CS11 ) | ( 1 << CS10 ) ) #define HAL_US_PER_SYMBOL ( 1 ) #define HAL_SYMBOL_MASK ( 0xFFFFffff ) #elif ( F_CPU == 1000000UL ) #define HAL_TCCR1B_CONFIG ( ( 1 << ICES1 ) | ( 1 << CS11 ) ) #define HAL_US_PER_SYMBOL ( 2 ) #define HAL_SYMBOL_MASK ( 0x7FFFffff ) #else #error "Clock speed not supported." #endif #if HARWARE_REVISION == ZIGBIT // IRQ E5 for Zigbit example #define RADIO_VECT INT5_vect #define HAL_ENABLE_RADIO_INTERRUPT( ) { ( EIMSK |= ( 1 << INT5 ) ) ; EICRB |= 0x0C ; PORTE &= ~(1<<PE5); DDRE &= ~(1<<DDE5); } #define HAL_DISABLE_RADIO_INTERRUPT( ) ( EIMSK &= ~( 1 << INT5 ) ) #else #define RADIO_VECT TIMER1_CAPT_vect #define HAL_ENABLE_RADIO_INTERRUPT( ) ( TIMSK1 |= ( 1 << ICIE1 ) ) #define HAL_DISABLE_RADIO_INTERRUPT( ) ( TIMSK1 &= ~( 1 << ICIE1 ) ) #endif #define HAL_ENABLE_OVERFLOW_INTERRUPT( ) ( TIMSK1 |= ( 1 << TOIE1 ) ) #define HAL_DISABLE_OVERFLOW_INTERRUPT( ) ( TIMSK1 &= ~( 1 << TOIE1 ) ) /** This macro will protect the following code from interrupts.*/ #define AVR_ENTER_CRITICAL_REGION( ) {uint8_t volatile saved_sreg = SREG; cli( ) /** This macro must always be used in conjunction with AVR_ENTER_CRITICAL_REGION so that interrupts are enabled again.*/ #define AVR_LEAVE_CRITICAL_REGION( ) SREG = saved_sreg;} /** \brief Enable the interrupt from the radio transceiver. */ #define hal_enable_trx_interrupt( ) HAL_ENABLE_RADIO_INTERRUPT( ) /** \brief Disable the interrupt from the radio transceiver. * * \retval 0 if the pin is low, 1 if the pin is high. */ #define hal_disable_trx_interrupt( ) HAL_DISABLE_RADIO_INTERRUPT( ) /*============================ TYPDEFS =======================================*/ /*============================ PROTOTYPES ====================================*/ /*============================ MACROS ========================================*/ /** \name Macros for radio operation. * \{ */ #define HAL_BAT_LOW_MASK ( 0x80 ) /**< Mask for the BAT_LOW interrupt. */ #define HAL_TRX_UR_MASK ( 0x40 ) /**< Mask for the TRX_UR interrupt. */ #define HAL_TRX_END_MASK ( 0x08 ) /**< Mask for the TRX_END interrupt. */ #define HAL_RX_START_MASK ( 0x04 ) /**< Mask for the RX_START interrupt. */ #define HAL_PLL_UNLOCK_MASK ( 0x02 ) /**< Mask for the PLL_UNLOCK interrupt. */ #define HAL_PLL_LOCK_MASK ( 0x01 ) /**< Mask for the PLL_LOCK interrupt. */ #define HAL_MIN_FRAME_LENGTH ( 0x03 ) /**< A frame should be at least 3 bytes. */ #define HAL_MAX_FRAME_LENGTH ( 0x7F ) /**< A frame should no more than 127 bytes. */ /** \} */ /*============================ TYPDEFS =======================================*/ /** \struct hal_rx_frame_t * \brief This struct defines the rx data container. * * \see hal_frame_read */ typedef struct{ uint8_t length; /**< Length of frame. */ uint8_t data[ HAL_MAX_FRAME_LENGTH ]; /**< Actual frame data. */ uint8_t lqi; /**< LQI value for received frame. */ bool crc; /**< Flag - did CRC pass for received frame? */ } hal_rx_frame_t; /** RX_START event handler callback type. Is called with timestamp in IEEE 802.15.4 symbols and frame length. See hal_set_rx_start_event_handler(). */ typedef void (*hal_rx_start_isr_event_handler_t)(uint32_t const isr_timestamp, uint8_t const frame_length); /** RRX_END event handler callback type. Is called with timestamp in IEEE 802.15.4 symbols and frame length. See hal_set_trx_end_event_handler(). */ typedef void (*hal_trx_end_isr_event_handler_t)(uint32_t const isr_timestamp); typedef void (*rx_callback_t) (uint16_t data); /*============================ PROTOTYPES ====================================*/ void hal_init( void ); void hal_reset_flags( void ); uint8_t hal_get_bat_low_flag( void ); void hal_clear_bat_low_flag( void ); hal_trx_end_isr_event_handler_t hal_get_trx_end_event_handler( void ); void hal_set_trx_end_event_handler( hal_trx_end_isr_event_handler_t trx_end_callback_handle ); void hal_clear_trx_end_event_handler( void ); hal_rx_start_isr_event_handler_t hal_get_rx_start_event_handler( void ); void hal_set_rx_start_event_handler( hal_rx_start_isr_event_handler_t rx_start_callback_handle ); void hal_clear_rx_start_event_handler( void ); uint8_t hal_get_pll_lock_flag( void ); void hal_clear_pll_lock_flag( void ); uint8_t hal_register_read( uint8_t address ); void hal_register_write( uint8_t address, uint8_t value ); uint8_t hal_subregister_read( uint8_t address, uint8_t mask, uint8_t position ); void hal_subregister_write( uint8_t address, uint8_t mask, uint8_t position, uint8_t value ); void hal_frame_read(hal_rx_frame_t *rx_frame, rx_callback_t rx_callback); void hal_frame_write( uint8_t *write_buffer, uint8_t length ); void hal_sram_read( uint8_t address, uint8_t length, uint8_t *data ); void hal_sram_write( uint8_t address, uint8_t length, uint8_t *data ); #endif /** @} */ /*EOF*/