#define GPIO_FUNC_SEL0 0x80000018 /* GPIO 15 - 0; 2 bit blocks */ #define BASE_UART1 0x80005000 #define UART1_CON 0x80005000 #define UART1_STAT 0x80005004 #define UART1_DATA 0x80005008 #define UR1CON 0x8000500c #define UT1CON 0x80005010 #define UART1_CTS 0x80005014 #define UART1_BR 0x80005018 #define GPIO_PAD_DIR0 0x80000000 #define GPIO_DATA0 0x80000008 #include "embedded_types.h" #include "nvm.h" #include "maca.h" #define reg(x) (*(volatile uint32_t *)(x)) #define DELAY 400000 #define DEBUG 1 #if DEBUG void putc(uint8_t c); void puts(uint8_t *s); void put_hex(uint8_t x); void put_hex16(uint16_t x); void put_hex32(uint32_t x); const uint8_t hex[16]={'0','1','2','3','4','5','6','7', '8','9','a','b','c','d','e','f'}; #else #define putc(...) #define puts(...) #define put_hex(...) #define put_hex16(...) #define put_hex32(...) #endif uint8_t getc(void); void flushrx(void); uint32_t to_u32(char *c); #include "isr.h" #define NBYTES 16 enum parse_states { SCAN_X, READ_CHARS, PROCESS, MAX_STATE, }; __attribute__ ((section ("startup"))) void main(void) { nvmType_t type=0; nvmErr_t err; volatile uint8_t c; volatile uint32_t buf[NBYTES/4]; volatile uint32_t i; volatile uint32_t len=0; volatile uint32_t state = SCAN_X; volatile uint32_t addr,data; *(volatile uint32_t *)GPIO_PAD_DIR0 = 0x00000100; /* Restore UART regs. to default */ /* in case there is still bootloader state leftover */ reg(UART1_CON) = 0x0000c800; /* mask interrupts, 16 bit sample --- helps explain the baud rate */ /* INC = 767; MOD = 9999 works: 115200 @ 24 MHz 16 bit sample */ #define INC 767 #define MOD 9999 reg(UART1_BR) = INC<<16 | MOD; /* see Section 11.5.1.2 Alternate Modes */ /* you must enable the peripheral first BEFORE setting the function in GPIO_FUNC_SEL */ /* From the datasheet: "The peripheral function will control operation of the pad IF */ /* THE PERIPHERAL IS ENABLED. */ reg(UART1_CON) = 0x00000003; /* enable receive and transmit */ reg(GPIO_FUNC_SEL0) = ( (0x01 << (14*2)) | (0x01 << (15*2)) ); /* set GPIO15-14 to UART (UART1 TX and RX)*/ vreg_init(); // puts("CRM status: 0x"); // put_hex32(reg(0x80003018)); // puts("\n\r"); // puts("Detecting internal nvm\n\r"); err = nvm_detect(gNvmInternalInterface_c, &type); /* puts("nvm_detect returned: 0x"); put_hex(err); puts(" type is: 0x"); put_hex32(type); puts("\n\r"); */ /* erase the flash */ // err = nvm_erase(gNvmInternalInterface_c, type, 0x4fffffff); err = nvm_erase(gNvmInternalInterface_c, 1, 0x4fffffff); /* puts("nvm_erase returned: 0x"); put_hex(err); puts("\n\r"); */ /* say we are ready */ len = 0; puts("ready"); flushrx(); /* read the length */ for(i=0; i<4; i++) { c = getc(); /* bail if the first byte of the length is zero */ len += (c<<(i*8)); } // puts("len: "); // put_hex32(len); // puts("\n\r"); /* write the OKOK magic */ ((uint8_t *)buf)[0] = 'O'; ((uint8_t *)buf)[1] = 'K'; ((uint8_t *)buf)[2] = 'O'; ((uint8_t *)buf)[3] = 'K'; // ((uint8_t *)buf)[3] = 'x'; // err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)buf, 0, 4); err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)buf, 0, 4); // puts("nvm_write returned: 0x"); // put_hex(err); // puts("\n\r"); /* write the length */ err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&len, 4, 4); /* read a byte, write a byte */ /* byte at a time will make this work as a contiki process better */ /* for OTAP */ for(i=0; i> 4]); putc(hex[x & 15]); } void put_hex16(uint16_t x) { put_hex((x >> 8) & 0xFF); put_hex((x) & 0xFF); } void put_hex32(uint32_t x) { put_hex((x >> 24) & 0xFF); put_hex((x >> 16) & 0xFF); put_hex((x >> 8) & 0xFF); put_hex((x) & 0xFF); }