/* Contiki library for DS18B20 temperature sensor - For more details see http://xxx Author - Author - License - GPLv3 */ #include "ds18b20.h" /* probe_for_ds18b20 probes for the sensor. Returns 0 on failure, 1 on success */ /* Assumptions: only one sensor on the "1-wire bus", on port WSN_DS18B20_PORT */ /* BUG: THIS CODE DOES NOT WORK AS INTENDED! IT RETURNS "1" EVEN WHEN THERE IS NO */ /* SENSOR CONNECTED. */ uint8_t ds18b20_probe(void) { uint8_t result = 0; /* Reset 1W-bus */ /* Pull PIN low for 480 microseconds (us) */ /* Start with setting bit DS18B20_1_PIN to 0 */ OW_SET_PIN_LOW(); /* then set direction to OUT by setting DS18B20_1_DDR bit to 1 */ OW_SET_OUTPUT(); /* Delay 480 us */ clock_delay_usec(480); /* See if sensor responds. First release the bus and switch to INput mode */ /* by setting DS18B20_1_DDR bit to 0 */ OW_SET_INPUT(); /* Activate internal pull-up by setting pin to HIGH (when in INput mode) */ /* OW_SET_PIN_HIGH(); */ /* Wait for the pin to go HIGH for 64 us */ clock_delay_usec(64); /* Now the sensor, if present, pulls the pin LOW for 60-240 us */ /* Detect 0 on PIND bit DS18B20_1_PIN. Invert the result so a presence (aka a 0) */ /* sets "result" to 1 (for success) */ result = !OW_GET_PIN_STATE(); /* The sensor releases the pin so it goes HIGH after 240 us, add some */ /* for the signal to stabilize, say 300 usecs to be on the safe side? */ if(result) { clock_delay_usec(300); /* Now the bus should be HIGH again */ result = OW_GET_PIN_STATE(); } return result; } /* Write 1 or 0 on the bus */ void write_bit(uint8_t bit) { /* Set pin to 0 */ OW_SET_OUTPUT(); OW_SET_PIN_LOW(); /* Pin should be 0 for at least 1 us */ clock_delay_usec(2); /* If we're writing a 1, let interna pull-up pull the bus high */ /* within 15 us of setting the bus to low */ if(bit) { /* Internal pull-up is activated by setting direction to IN and the */ /* setting the pin to HIGH */ OW_SET_INPUT(); OW_SET_PIN_HIGH(); } /* OK, now the bus is either LOW, or pulled HIGH by the internal pull-up */ /* Let this state remain for 60 us, then release the bus */ clock_delay_usec(60); /* Release the bus */ OW_SET_PIN_HIGH(); OW_SET_INPUT(); /* Allow > 1 us between read/write operations */ clock_delay_usec(2); } /* */ /* Read one bit of information from the bus, and return it as 1 or 0 */ /* */ uint8_t read_bit(void) { uint8_t bit = 0; /* Set pin to 0 */ OW_SET_OUTPUT(); OW_SET_PIN_LOW(); /* Pin should be 0 for at least 1 us */ clock_delay_usec(2); /* Now read the bus, start by setting in/out direction and activating internal */ /* pull-up resistor */ OW_SET_INPUT(); OW_SET_PIN_HIGH(); /* ds18b20 either keeps the pin down or releases the bus and the */ /* bus then goes high because of the interna pull-up resistor */ /* Check whichever happens before 15 us has passed */ clock_delay_usec(15 - 2 - 1); bit = OW_GET_PIN_STATE(); /* The complete read cycle must last at least 60 us. We have now spent */ /* about 14-15 us in delays, so add another delay to reach >= 60 us */ clock_delay_usec(50); /* Release bus */ OW_SET_PIN_HIGH(); OW_SET_INPUT(); /* Allow > 1 us between read/write operations */ clock_delay_usec(2); return bit ? 1 : 0; } /* */ /* Read one byte of information. A byte is read least significant bit first */ /* */ uint8_t read_byte(void) { uint8_t result = 0; uint8_t bit; int i; for(i = 0; i < 8; i++) { bit = read_bit(); result += (bit << i); } return result; } /* */ /* Write one byte of information. A byte is written least significant bit first */ /* */ void write_byte(uint8_t byte) { int i; for(i = 0; i < 8; i++) { write_bit((byte >> i) & 1); } } /* */ /* ds18b20_get_temp returns the temperature in "temp" (in degrees celsius) */ /* Returns 0 on failure (and then "temp" is left unchanged */ /* Returns 1 on success, and sets temp */ /* */ uint8_t ds18b20_get_temp(float *temp) { uint8_t result = 0; /* Reset bus by probing. Probe returns 1 on success/presence of sensor */ if(ds18b20_probe()) { /* write command "skip rom" since we only have one sensor on the wire! */ write_byte(DS18B20_COMMAND_SKIP_ROM); /* write command to start measurement */ write_byte(DS18B20_COMMAND_START_CONVERSION); /* Wait for conversion to complete */ /* Conversion is 12-bit by default. */ /* Since we have external power to the sensor (ie not in "parasitic power" mode) */ /* the bus is held LOW by the sensor while the conversion is going on, and then HIGH */ /* when conversion is finished. */ OW_SET_INPUT(); int count = 0; while(!OW_GET_PIN_STATE()) { clock_delay_msec(10); count++; /* Longest conversion time is 750 ms (12-bit resolution) */ /* So if count > 80 (for a little margin!), we return -274.0 */ /* which indicates failure to read the temperature. */ if(count > 80) { return 0; } } /* The result is stored in the "scratch pad", a 9 byte memory block. */ /* The first two bytes are the conversion result. Reading the scratch pad */ /* can be terminated by sending a reset signal (but we read all 9 bytes) */ (void)ds18b20_probe(); write_byte(DS18B20_COMMAND_SKIP_ROM); write_byte(DS18B20_COMMAND_READ_SCRATCH_PAD); uint8_t i, sp_arr[9]; for(i = 0; i < 9; i++) { sp_arr[i] = read_byte(); } /* Check CRC, if mismatch, return 0 (failure to read temperature) */ uint8_t crc_cal = crc8_ds18b20(sp_arr, 8); if(crc_cal != sp_arr[8]) { return 0; } /* OK, now decode what the temperature reading is. This code assumes 12-bit resolution, */ /* so this must be modified if the code is modified to use any other resolution! */ int16_t temp_res; uint8_t temp_lsb = sp_arr[0]; uint8_t temp_msb = sp_arr[1]; temp_res = (int16_t)temp_msb << 8 | temp_lsb; *temp = (float)temp_res * 0.0625; result = 1; } return result; } /* */ /* crc8 algorithm for ds18b20 */ /* http://www.miscel.dk/MiscEl/CRCcalculations.html */ /* */ uint8_t crc8_ds18b20(uint8_t *buf, uint8_t buf_len) { uint8_t result = 0; uint8_t i, b; for(i = 0; i < buf_len; i++) { result = result ^ buf[i]; for(b = 1; b < 9; b++) { if(result & 0x1) { result = (result >> 1) ^ 0x8C; } else { result = result >> 1; } } } return result; }