/* * Copyright (c) 2009, Swedish Institute of Computer Science * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. * */ /** * \file * Coffee architecture-dependent functionality for the STM32W108-based mb851 * platform. * \author * Salvatore Pitrulli <salvopitru@users.sourceforge.net> */ #include "cfs-coffee-arch.h" #define DEBUG 1 #if DEBUG #include <stdio.h> #define PRINTF(...) printf(__VA_ARGS__) #else #define PRINTF(...) #endif #define TESTCOFFEE 1 #define DEBUG_CFS 1 #if TESTCOFFEE #if DEBUG_CFS #include <stdio.h> #define PRINTF_CFS(...) printf(__VA_ARGS__) #else #define PRINTF_CFS(...) #endif #include "cfs/cfs.h" #include "cfs/cfs-coffee.h" #include "lib/crc16.h" #include "lib/random.h" #include <stdio.h> #define FAIL(x) PRINTF("FAILED\n");error = (x); goto end; #define FILE_SIZE 512 int coffee_file_test(void) { int error; int wfd, rfd, afd; unsigned char buf[256], buf2[11]; int r, i, j, total_read; unsigned offset; cfs_remove("T1"); cfs_remove("T2"); cfs_remove("T3"); cfs_remove("T4"); cfs_remove("T5"); wfd = rfd = afd = -1; for(r = 0; r < sizeof(buf); r++) { buf[r] = r; } PRINTF("TEST 1\n"); /* Test 1: Open for writing. */ wfd = cfs_open("T1", CFS_WRITE); if(wfd < 0) { FAIL(-1); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("2\n"); /* Test 2: Write buffer. */ r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-2); } else if(r < sizeof(buf)) { FAIL(-3); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("3\n"); /* Test 3: Deny reading. */ r = cfs_read(wfd, buf, sizeof(buf)); if(r >= 0) { FAIL(-4); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("4\n"); /* Test 4: Open for reading. */ rfd = cfs_open("T1", CFS_READ); if(rfd < 0) { FAIL(-5); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("5\n"); /* Test 5: Write to read-only file. */ r = cfs_write(rfd, buf, sizeof(buf)); if(r >= 0) { FAIL(-6); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("7\n"); /* Test 7: Read the buffer written in Test 2. */ memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-8); } else if(r < sizeof(buf)) { PRINTF_CFS("r=%d\n", r); FAIL(-9); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("8\n"); /* Test 8: Verify that the buffer is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != r) { PRINTF_CFS("r=%d. buf[r]=%d\n", r, buf[r]); FAIL(-10); } } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("9\n"); /* Test 9: Seek to beginning. */ if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) { FAIL(-11); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("10\n"); /* Test 10: Write to the log. */ r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-12); } else if(r < sizeof(buf)) { FAIL(-13); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("11\n"); /* Test 11: Read the data from the log. */ cfs_seek(rfd, 0, CFS_SEEK_SET); memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-14); } else if(r < sizeof(buf)) { FAIL(-15); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("12\n"); /* Test 12: Verify that the data is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != r) { FAIL(-16); } } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("13\n"); /* Test 13: Write a reversed buffer to the file. */ for(r = 0; r < sizeof(buf); r++) { buf[r] = sizeof(buf) - r - 1; } if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) { FAIL(-17); } r = cfs_write(wfd, buf, sizeof(buf)); if(r < 0) { FAIL(-18); } else if(r < sizeof(buf)) { FAIL(-19); } if(cfs_seek(rfd, 0, CFS_SEEK_SET) != 0) { FAIL(-20); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("14\n"); /* Test 14: Read the reversed buffer. */ cfs_seek(rfd, 0, CFS_SEEK_SET); memset(buf, 0, sizeof(buf)); r = cfs_read(rfd, buf, sizeof(buf)); if(r < 0) { FAIL(-21); } else if(r < sizeof(buf)) { PRINTF_CFS("r = %d\n", r); FAIL(-22); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("15\n"); /* Test 15: Verify that the data is correct. */ for(r = 0; r < sizeof(buf); r++) { if(buf[r] != sizeof(buf) - r - 1) { FAIL(-23); } } cfs_close(rfd); cfs_close(wfd); if(cfs_coffee_reserve("T2", FILE_SIZE) < 0) { FAIL(-24); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("16\n"); /* Test 16: Test multiple writes at random offset. */ for(r = 0; r < 100; r++) { wfd = cfs_open("T2", CFS_WRITE | CFS_READ); if(wfd < 0) { FAIL(-25); } offset = random_rand() % FILE_SIZE; for(r = 0; r < sizeof(buf); r++) { buf[r] = r; } if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) { FAIL(-26); } if(cfs_write(wfd, buf, sizeof(buf)) != sizeof(buf)) { FAIL(-27); } if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) { FAIL(-28); } memset(buf, 0, sizeof(buf)); if(cfs_read(wfd, buf, sizeof(buf)) != sizeof(buf)) { FAIL(-29); } for(i = 0; i < sizeof(buf); i++) { if(buf[i] != i) { PRINTF_CFS("buf[%d] != %d\n", i, buf[i]); FAIL(-30); } } } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("17\n"); /* Test 17: Append data to the same file many times. */ #define APPEND_BYTES 3000 #define BULK_SIZE 10 for (i = 0; i < APPEND_BYTES; i += BULK_SIZE) { afd = cfs_open("T3", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-31); } for (j = 0; j < BULK_SIZE; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE)) != BULK_SIZE) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-32); } cfs_close(afd); } PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("18\n"); /* Test 18: Read back the data written in Test 17 and verify that it is correct. */ afd = cfs_open("T3", CFS_READ); if(afd < 0) { FAIL(-33); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { FAIL(-34); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-35 r=%d\n",r); FAIL(-35); } if(total_read != APPEND_BYTES) { PRINTF_CFS("FAIL:-35 total_read=%d\n",total_read); FAIL(-35); } cfs_close(afd); PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("19\n"); /***************T4********************/ /* file T4 and T5 writing forces to use garbage collector in greedy mode * this test is designed for 10kb of file system * */ #define APPEND_BYTES_1 2000 #define BULK_SIZE_1 10 for (i = 0; i < APPEND_BYTES_1; i += BULK_SIZE_1) { afd = cfs_open("T4", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-36); } for (j = 0; j < BULK_SIZE_1; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE_1)) != BULK_SIZE_1) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-37); } cfs_close(afd); } afd = cfs_open("T4", CFS_READ); if(afd < 0) { FAIL(-38); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { PRINTF_CFS("FAIL:-39, total_read=%d r=%d\n",total_read,r); FAIL(-39); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-40 r=%d\n",r); FAIL(-40); } if(total_read != APPEND_BYTES_1) { PRINTF_CFS("FAIL:-41 total_read=%d\n",total_read); FAIL(-41); } cfs_close(afd); /***************T5********************/ PRINTF("PASSED\n"); PRINTF("TEST "); PRINTF("20\n"); #define APPEND_BYTES_2 1000 #define BULK_SIZE_2 10 for (i = 0; i < APPEND_BYTES_2; i += BULK_SIZE_2) { afd = cfs_open("T5", CFS_WRITE | CFS_APPEND); if (afd < 0) { FAIL(-42); } for (j = 0; j < BULK_SIZE_2; j++) { buf[j] = 1 + ((i + j) & 0x7f); } if ((r = cfs_write(afd, buf, BULK_SIZE_2)) != BULK_SIZE_2) { PRINTF_CFS("Count:%d, r=%d\n", i, r); FAIL(-43); } cfs_close(afd); } afd = cfs_open("T5", CFS_READ); if(afd < 0) { FAIL(-44); } total_read = 0; while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) { for(j = 0; j < r; j++) { if(buf2[j] != 1 + ((total_read + j) & 0x7f)) { PRINTF_CFS("FAIL:-45, total_read=%d r=%d\n",total_read,r); FAIL(-45); } } total_read += r; } if(r < 0) { PRINTF_CFS("FAIL:-46 r=%d\n",r); FAIL(-46); } if(total_read != APPEND_BYTES_2) { PRINTF_CFS("FAIL:-47 total_read=%d\n",total_read); FAIL(-47); } cfs_close(afd); PRINTF("PASSED\n"); error = 0; end: cfs_close(wfd); cfs_close(rfd); cfs_close(afd); return error; } #endif /* TESTCOFFEE */ void stm32w_flash_read(int32u address, void * data, int32u length) { int8u * pdata = (int8u *)address; ENERGEST_ON(ENERGEST_TYPE_FLASH_READ); memcpy(data, pdata, length); ENERGEST_OFF(ENERGEST_TYPE_FLASH_READ); } void stm32w_flash_erase(int8u sector) { //halInternalFlashErase(MFB_PAGE_ERASE, COFFEE_START + (sector) * COFFEE_SECTOR_SIZE); int16u data = 0; int32u addr = COFFEE_START + (sector) * COFFEE_SECTOR_SIZE; int32u end = addr + COFFEE_SECTOR_SIZE; /* This prevents from accidental write to CIB. */ if (!(addr >= MFB_BOTTOM && end <= MFB_TOP + 1)) { return; } for(; addr < end; addr += 2){ halInternalFlashWrite(addr, &data, 1); } } // Allocates a buffer of FLASH_PAGE_SIZE bytes statically (rather than on the stack). #ifndef STATIC_FLASH_BUFFER #define STATIC_FLASH_BUFFER 1 #endif void stm32w_flash_write(int32u address, const void * data, int32u length) { const int32u end = address + length; int32u i; int32u next_page, curr_page; int16u offset; #if STATIC_FLASH_BUFFER static int8u buf[FLASH_PAGE_SIZE]; #else int8u buf[FLASH_PAGE_SIZE]; #endif for(i = address; i < end;) { next_page = (i | (FLASH_PAGE_SIZE-1)) + 1; curr_page = i & ~(FLASH_PAGE_SIZE-1); offset = i-curr_page; if(next_page > end) { next_page = end; } // Read a page from flash and put it into a mirror buffer. stm32w_flash_read(curr_page, buf, FLASH_PAGE_SIZE); // Update flash mirror data with new data. memcpy(buf + offset, data, next_page - i); // Erase flash page. ENERGEST_ON(ENERGEST_TYPE_FLASH_WRITE); halInternalFlashErase(MFB_PAGE_ERASE, i); // Write modified data form mirror buffer into the flash. halInternalFlashWrite(curr_page, (int16u *)buf, FLASH_PAGE_SIZE/2); ENERGEST_OFF(ENERGEST_TYPE_FLASH_WRITE); data = (uint8_t *)data + next_page - i; i = next_page; } }