package statistics; // Gaussian CDF Taylor approximation // Code borrowed from http://www.cs.princeton.edu/introcs/21function/Gaussian.java.html 19/9 2006 /************************************************************************* * Compilation: javac Gaussian.java * Execution: java Gaussian x mu sigma * * Function to compute the Gaussian pdf (probability density function) * and the Gaussian cdf (cumulative density function) * * % java Gaussian 820 1019 209 * 0.17050966869132111 * * % java Gaussian 1500 1019 209 * 0.9893164837383883 * * % java Gaussian 1500 1025 231 * 0.9801220907365489 * *************************************************************************/ public class Gaussian { // return phi(x) = standard Gaussian pdf public static double phi(double x) { return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI); } // return phi(x) = Gaussian pdf with mean mu and stddev sigma public static double phi(double x, double mu, double sigma) { return phi((x - mu) / sigma) / sigma; } // return Phi(z) = standard Gaussian cdf using Taylor approximation public static double Phi(double z) { if (z < -8.0) return 0.0; if (z > 8.0) return 1.0; double sum = 0.0, term = z; for (int i = 3; sum + term != sum; i += 2) { sum = sum + term; term = term * z * z / i; } return 0.5 + sum * phi(z); } // return Phi(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma public static double Phi(double z, double mu, double sigma) { return Phi((z - mu) / sigma); } public static void main(String[] args) { double z = Double.parseDouble(args[0]); double mu = Double.parseDouble(args[1]); double sigma = Double.parseDouble(args[2]); System.out.println(Phi(z, mu, sigma)); } }