/* Copyright 2007, Freie Universitaet Berlin. All rights reserved. These sources were developed at the Freie Universität Berlin, Computer Systems and Telematics group. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Freie Universitaet Berlin (FUB) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. This software is provided by FUB and the contributors on an "as is" basis, without any representations or warranties of any kind, express or implied including, but not limited to, representations or warranties of non-infringement, merchantability or fitness for a particular purpose. In no event shall FUB or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. This implementation was developed by the CST group at the FUB. For documentation and questions please use the web site http://scatterweb.mi.fu-berlin.de and the mailinglist scatterweb@lists.spline.inf.fu-berlin.de (subscription via the Website). Berlin, 2007 */ /** * @file ScatterWeb.Sd.c * @ingroup libsd * @brief MMC-/SD-Card library * * @author Michael Baar <baar@inf.fu-berlin.de> * @version $Revision: 1.6 $ * * $Id: sd.c,v 1.6 2008/05/27 14:22:55 nvt-se Exp $ * * Initialisation and basic functions for read and write access */ #include "sd_internals.h" #include "sd.h" #include "sdspi.h" volatile sd_state_t sd_state; /****************************************************************************** * @name Initialization and configuration * @{ */ void sd_init(void) { // depending on the system global variables may not get initialised on startup memset((void *)&sd_state, 0, sizeof (sd_state)); // initialize io ports sd_init_platform(); } enum sd_init_ret sd_init_card(sd_cache_t * pCache) { enum sd_init_ret ret = SD_INIT_SUCCESS; struct sd_csd csd; uint16_t ccc = 0; int resetcnt; struct sd_response_r3 r3; if (!sd_detected()) { return SD_INIT_NOCARD; } if (sd_state.Flags & SD_INITIALIZED) { return SD_INIT_SUCCESS; } // Wait for UART and switch to SPI mode if (!uart_lock_wait(UART_MODE_SPI)) { return SD_INIT_FAILED; } // reset card resetcnt = _sd_reset(&r3); if (resetcnt >= SD_RESET_RETRY_COUNT) { ret = SD_INIT_FAILED; goto sd_init_card_fail; } // Test for hardware compatibility if ((r3.ocr & SD_V_MASK) != SD_V_MASK) { ret = SD_INIT_NOTSUPP; goto sd_init_card_fail; } // Test for software compatibility if (!_sd_read_register(&csd, SD_CMD_SEND_CSD, sizeof (struct sd_csd))) { ret = SD_INIT_FAILED; goto sd_init_card_fail; } ccc = SD_CSD_CCC(csd); if ((ccc & SD_DEFAULT_MINCCC) != SD_DEFAULT_MINCCC) { ret = SD_INIT_NOTSUPP; goto sd_init_card_fail; } sd_init_card_fail: sdspi_unselect(); uart_unlock(UART_MODE_SPI); #ifdef LOG_VERBOSE LOG_VERBOSE("(sd_init) result:%u, resetcnt:%i OCR:%.8lx, CCC:%.4x", ret, resetcnt, r3.ocr, ccc); #endif if (ret != SD_INIT_SUCCESS) { return ret; } // state sd_state.MinBlockLen_bit = 9; sd_state.MaxBlockLen_bit = SD_CSD_READ_BL_LEN(csd); sd_state.Flags = SD_INITIALIZED; if (SD_CSD_READ_PARTIAL(csd)) { sd_state.MinBlockLen_bit = 0; sd_state.Flags |= SD_READ_PARTIAL; } if (SD_CSD_WRITE_PARTIAL(csd)) { sd_state.Flags |= SD_WRITE_PARTIAL; } sd_state.BlockLen_bit = 9; sd_state.BlockLen = 1 << 9; #if SD_CACHE if (pCache == NULL) { return SD_INIT_NOTSUPP; } sd_state.Cache = pCache; _sd_cache_init(); #endif return ret; } void sd_flush(void) { if (uart_lock(UART_MODE_SPI)) { #if SD_WRITE && SD_CACHE _sd_cache_flush(); #endif #if SD_WRITE && SPI_DMA_WRITE sd_write_flush(); #endif uart_unlock(UART_MODE_SPI); } } void sd_close(void) { sd_flush(); // reset state memset((void *)&sd_state, 0, sizeof (sd_state)); } uint8_t sd_set_blocklength(const uint8_t blocklength_bit) { uint8_t ret; uint8_t arg[4]; // test if already set if (blocklength_bit == sd_state.BlockLen_bit) { return sd_state.BlockLen_bit; } // Wait for UART and switch to SPI mode if (!uart_lock_wait(UART_MODE_SPI)) { return sd_state.BlockLen_bit; } ((uint16_t *) arg)[1] = 0; ((uint16_t *) arg)[0] = 1 << blocklength_bit; // set blocklength command if (_sd_send_cmd(SD_CMD_SET_BLOCKLENGTH, SD_RESPONSE_SIZE_R1, arg, NULL)) { sd_state.BlockLen_bit = blocklength_bit; sd_state.BlockLen = ((uint16_t *) arg)[0]; ret = blocklength_bit; } else { ret = SD_BLOCKLENGTH_INVALID; } // unlock uart uart_unlock(UART_MODE_SPI); return ret; } //@} /////////////////////////////////////////////////////////////////////////////// // Public functions, Reading /////////////////////////////////////////////////////////////////////////////// uint16_t sd_AlignAddress(uint32_t * pAddress) { uint16_t blMask = sd_state.BlockLen - 1; uint16_t *lw = (uint16_t *) pAddress; uint16_t offset = *lw & blMask; *lw &= ~blMask; return offset; } uint16_t sd_read_block(void (*const pBuffer), const uint32_t address) { if (!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) { return FALSE; } sdspi_read(pBuffer, sd_state.BlockLen, TRUE); // receive CRC16 and finish _sd_read_stop(2); return sd_state.BlockLen; } #if SD_READ_BYTE bool sd_read_byte(void *pBuffer, const uint32_t address) { if (sd_set_blocklength(0) == 0) { return sd_read_block(pBuffer, address); } else { uint32_t blAdr = address; uint16_t offset; // bytes from aligned address to start of first byte to keep // align offset = sd_AlignAddress(&blAdr); // start if (!_sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address)) { return FALSE; } // read Spi_read(pBuffer, offset + 1, FALSE); // done _sd_read_stop(sd_state.BlockLen - offset - 1); } return TRUE; } #endif #if SD_READ_ANY && !SD_CACHE unsigned int sd_read(void *pBuffer, unsigned long address, unsigned int size) { unsigned char *p; // pointer to current pos in receive buffer unsigned int offset; // bytes from aligned address to start of first byte to keep unsigned int read_count; // num bytes to read in one iteration bool dump_flag; // number of bytes to dump in last iteration unsigned int num_bytes_read; // number of bytes read into receive buffer unsigned char ret; // // parameter processing // if (size == 0) { return FALSE; } // align to block offset = sd_AlignAddress(&address); if ((offset == 0) && (sd_state.BlockLen == size)) { // best case: perfectly block aligned, no chunking // -> do shortcut return sd_read_block(pBuffer, address); } // calculate first block if (size > sd_state.BlockLen) { read_count = sd_state.BlockLen; } else { read_count = size; } // // Data transfer // // request data transfer ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address); RETF(ret); // run to offset if (offset) { sdspi_read(pBuffer, offset, FALSE); // dump till offset dump_flag = ((read_count + offset) < sd_state.BlockLen); if (!dump_flag) { read_count = sd_state.BlockLen - offset; // max bytes to read from first block } } else { dump_flag = (read_count < sd_state.BlockLen); } // // block read loop // num_bytes_read = 0; p = pBuffer; do { // whole block will be processed size -= read_count; // global counter // read to receive buffer sdspi_read(p, read_count, TRUE); p += read_count; // increment buffer pointer num_bytes_read += read_count; // finish block if (dump_flag) { // cancel remaining bytes (last iteration) _sd_read_stop(sd_state.BlockLen - read_count - offset); break; // unselect is included in send_cmd } else { sdspi_idle(2); // receive CRC16 if (size != 0) { // address calculation for next block offset = 0; address += sd_state.BlockLen; if (size > sd_state.BlockLen) { read_count = sd_state.BlockLen; dump_flag = FALSE; } else { read_count = size; dump_flag = TRUE; } sdspi_unselect(); ret = _sd_read_start(SD_CMD_READ_SINGLE_BLOCK, address); RETF(ret); } else { // finished _sd_read_stop(0); break; } } } while (1); return num_bytes_read; } #endif // SD_READ_ANY /////////////////////////////////////////////////////////////////////////////// // Public functions, Writing /////////////////////////////////////////////////////////////////////////////// #if SD_WRITE enum sd_write_ret _sd_write_finish(void) { uint16_t r2; uint8_t ret; enum sd_write_ret result = SD_WRITE_STORE_ERR; uint16_t i; #if SPI_DMA_WRITE sdspi_dma_wait(); sdspi_dma_lock = FALSE; #endif // dummy crc sdspi_idle(2); // receive data response (ZZS___ 3 bits crc response) for (i = 0; i < SD_TIMEOUT_NCR; i++) { ret = sdspi_rx(); if ((ret > 0) && (ret < 0xFF)) { while (ret & 0x80) { ret <<= 1; } ret = ((ret & 0x70) == 0x20); break; } } // wait for data to be written _sd_wait_standby(NULL); sdspi_unselect(); if (ret) { // data transfer to sd card buffer was successful // query for result of actual write operation ret = _sd_send_cmd(SD_CMD_SEND_STATUS, SD_RESPONSE_SIZE_R2, NULL, &r2); if (ret && (r2 == 0)) { result = SD_WRITE_SUCCESS; } } else { // data transfer to sd card buffer failed } // unlock uart (locked from every write operation) uart_unlock(UART_MODE_SPI); return result; } enum sd_write_ret sd_write_flush(void) { #if SPI_DMA_WRITE if (!sdspi_dma_lock) { return SD_WRITE_DMA_ERR; } else { return _sd_write_finish(); } #else return SD_WRITE_SUCCESS; #endif } enum sd_write_ret _sd_write_block(const uint32_t * pAddress, const void *pBuffer, int increment) { uint8_t r1, ret; // block write-access on write protection if (sd_protected()) { return SD_WRITE_PROTECTED_ERR; } // acquire uart if (!uart_lock_wait(UART_MODE_SPI)) { return SD_WRITE_INTERFACE_ERR; } // start write SD_LED_WRITE_ON; r1 = 0; ret = _sd_send_cmd(SD_CMD_WRITE_SINGLE_BLOCK, SD_RESPONSE_SIZE_R1, pAddress, &r1); if (!ret | r1) { uart_unlock(UART_MODE_SPI); SD_LED_WRITE_OFF; return SD_WRITE_COMMAND_ERR; } // write data sdspi_select(); sdspi_tx(0xFF); sdspi_tx(SD_TOKEN_WRITE); sdspi_write(pBuffer, sd_state.BlockLen, increment); SD_LED_WRITE_OFF; // finish write #if SPI_DMA_WRITE sdspi_dma_lock = TRUE; return SD_WRITE_SUCCESS; #else return _sd_write_finish(); #endif } enum sd_write_ret sd_set_block(const uint32_t address, const char (*const pChar)) { return _sd_write_block(&address, pChar, FALSE); } enum sd_write_ret sd_write_block(const uint32_t address, void const (*const pBuffer)) { return _sd_write_block(&address, pBuffer, TRUE); } #endif /////////////////////////////////////////////////////////////////////////////// // Supporting functions /////////////////////////////////////////////////////////////////////////////// /** * @brief Reads operating condition from SD or MMC card. * \internal * \Note Should allow to find out the card type on first run if needed. */ inline bool _sd_get_op_cond(struct sd_response_r1 * pResponse) { bool ret; // SD style ret = _sd_send_cmd(SD_CMD_APP_SECIFIC_CMD, SD_RESPONSE_SIZE_R1, NULL, pResponse); if (ret) { uint32_t arg = SD_V_MASK; ret = _sd_send_cmd(SD_ACMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, &arg, pResponse); } else { // MMC style init ret = _sd_send_cmd(SD_CMD_SEND_OP_COND, SD_RESPONSE_SIZE_R1, NULL, pResponse); if (*((uint8_t *) pResponse) & SD_R1_ERROR_MASK) { ret = FALSE; } } return ret; } /** * @brief Wait for the card to enter standby state * \internal */ bool _sd_wait_standby(struct sd_response_r3 * pOpCond) { bool ret; int i = SD_TIMEOUT_IDLE; struct sd_response_r3 opCond; struct sd_response_r3 *pR3 = pOpCond; if (pR3 == NULL) { pR3 = &opCond; } sdspi_wait_token(0xFF, 0xFF, 0xFF, SD_TIMEOUT_NCR); do { ret = _sd_get_op_cond((struct sd_response_r1 *)pR3); if (ret && (pR3->r1.in_idle_state == 0)) { ret = _sd_send_cmd(SD_CMD_READ_OCR, SD_RESPONSE_SIZE_R3, NULL, pR3); if (ret && !SD_OCR_BUSY(pR3->ocr)) { return TRUE; } } i--; } while (i); return FALSE; } /** * @brief Resets the card and (hopefully) returns with the card in standby state * \internal */ int _sd_reset(struct sd_response_r3 *pOpCond) { int i; bool ret; struct sd_response_r1 r1; for (i = 0; i < SD_RESET_RETRY_COUNT; i++) { ret = _sd_send_cmd(SD_CMD_GO_IDLE_STATE, SD_RESPONSE_SIZE_R1, NULL, &r1); if (ret == 0 || r1.illegal_cmd) { _sd_send_cmd(SD_CMD_STOP_TRANSMISSION, SD_RESPONSE_SIZE_R1, NULL, &r1); } else { ret = _sd_wait_standby(pOpCond); if (ret) { break; } } } return i; } /** * @brief Used to send all kinds of commands to the card and return the response. * \internal */ bool _sd_send_cmd(const uint8_t command, const int response_size, const void *pArg, void (*const pResponse)) { uint8_t cmd[6] = { 0x40, 0, 0, 0, 0, 0x95 }; uint8_t data; // rx buffer int i; // loop counter #if SD_WRITE && SPI_DMA_WRITE sd_write_flush(); #endif sdspi_select(); cmd[0] |= command; if (pArg != NULL) { cmd[1] = ((uint8_t *) pArg)[3]; cmd[2] = ((uint8_t *) pArg)[2]; cmd[3] = ((uint8_t *) pArg)[1]; cmd[4] = ((uint8_t *) pArg)[0]; } sdspi_write(cmd, 6, 1); // wait for start bit i = SD_TIMEOUT_NCR; do { data = sdspi_rx(); if ((data & 0x80) == 0) { goto _sd_send_cmd_response; } } while (i--); goto sd_send_cmd_fail; _sd_send_cmd_response: // start bit received, read response with size i i = response_size - 1; if (pResponse != NULL) { // copy response to response buffer do { ((uint8_t *) pResponse)[i] = data; if (i == 0) { break; } data = sdspi_rx(); i--; } while (1); } else { // receive and ignore response sdspi_read(&data, i, 0); } // done successfully sdspi_unselect(); return TRUE; sd_send_cmd_fail: // failed //sdspi_unselect(); return FALSE; } /** * @brief Read Card Register * \internal */ uint16_t _sd_read_register(void *pBuffer, uint8_t cmd, uint16_t size) { if (!_sd_read_start(cmd, 0)) { return FALSE; } sdspi_read(pBuffer, size, TRUE); _sd_read_stop(2); return size; } /** * @brief Begin block read operation * \internal */ bool _sd_read_start(uint8_t cmd, uint32_t address) { uint8_t r1; uint8_t ret; uint16_t i; // aquire uart if (!uart_lock_wait(UART_MODE_SPI)) { return FALSE; } ret = _sd_send_cmd(cmd, SD_RESPONSE_SIZE_R1, &address, &r1); if (!ret || r1) { goto _sd_read_start_fail; } // Wait for start bit (0) sdspi_select(); i = sdspi_wait_token(0xFF, 0xFF, SD_TOKEN_READ, SD_TIMEOUT_READ); if (i < SD_TIMEOUT_READ) { // token received, data bytes follow SD_LED_READ_ON; /* Following code handles error tokens. Since these are currently not used in the application they can just be ignored. Anyway this is still useful when debugging. else if( (data != 0) && (data & SD_DATA_ERROR_TOKEN_MASK) == data ) { // data error token sdspi_rx(); break; } */ return TRUE; } else { // error or timeout } _sd_read_start_fail: sdspi_unselect(); uart_unlock(UART_MODE_SPI); return FALSE; } /** * @brief Finished with reading, stop transfer * \internal */ void _sd_read_stop(uint16_t count) { // finish block + crc if (count) { uint8_t dump; sdspi_read(&dump, count + 2, FALSE); sdspi_unselect(); } SD_LED_READ_OFF; // wait for switch to standby mode if (!_sd_wait_standby(NULL)) { _sd_reset(NULL); } // unlock uart (locked from _sd_read_start) uart_unlock(UART_MODE_SPI); }