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ABSTRACT
Energy is of primary importance in wireless sensor networks.
By being able to estimate the energy consumption of the
sensor nodes, applications and routing protocols are able to
make informed decisions that increase the lifetime of the
sensor network. However, it is in general not possible to
measure the energy consumption on popular sensor node
platforms. In this paper, we present and evaluate a software-
based on-line energy estimation mechanism that estimates
the energy consumption of a sensor node. We evaluate the
mechanism by comparing the estimated energy consumption
with the lifetime of capacitor-powered sensor nodes. By im-
plementing and evaluating the X-MAC protocol, we show
how software-based on-line energy estimation can be used
to empirically evaluate the energy efficiency of sensor net-
work protocols.

1. INTRODUCTION
Energy is of primary importance in wireless sensor net-

works. Sensor nodes have limited energy supplies and hence
must make intelligent and informed decisions that can help
conserve energy. Being able to make decisions based on
knowledge of the current energy consumption can increase
the lifetime with up to 52% [6]. Also, by distributing en-
ergy information to neighboring sensor nodes, routing can
be made more energy-efficient [10, 13].

Current hardware platforms such as the Tmote Sky [7]
and the ESB [9] do not provide hardware mechanisms for
measuring the energy consumption of the sensor node. While
it is possible to measure the battery voltage, the battery
voltage is affected by the battery capture effect and is not a
good estimate of the current energy consumption. Further-
more, the unique characteristics of sensor network applica-
tions make hardware-based energy measurement difficult [3].

In this paper we investigate the use of a software-based
on-line energy estimation mechanism for small sensor nodes.
The mechanism runs directly on the sensor nodes and pro-
vides real-time estimates of the current energy consumption.
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Our target platforms are low-end sensor nodes, such as the
ESB [9] and the Tmote Sky [7]. The mechanism uses an
intentionally simple linear model that is easy to implement
and add to existing sensor node operating systems. No mod-
ifications to existing applications or network protocols are
required.

The idea of doing software-based on-line energy estima-
tion is not new; for example, Younis and Fahmy have previ-
ously suggested the use of a simple linear model for estimat-
ing energy consumption [12]. However, their model requires
extensive changes to all applications and protocols that use
it. We are not aware of any previous work that evaluates
the efficiency of software-based on-line energy estimation.

The contribution of this paper is that we show that an in-
tentionally simple mechanism for on-line node-level energy
estimation can provide a good estimation of energy con-
sumption. We have implemented our mechanism in Con-
tiki [2] but the mechanism is general enough to be used in
any operating system for sensor nodes. We evaluate the ac-
curacy of the energy estimates by comparing the results from
the energy estimation mechanism with the lifetime of sensor
nodes. Our results show that the energy estimation provides
good estimates, but further study is needed to quantify the
accuracy of the mechanism.

Hardware-based energy measurement mechanisms are typ-
ically difficult to add to existing hardware designs as they
require a significant amount of modifications [3]. The cost
increase for adding energy measurement is expected to be
100% [3] In contrast, our software-based energy estimation
mechanism is easily added to existing hardware and software
designs, without any additional per-unit cost. In this paper
we show that a software-based energy estimation mechanism
can be added to an existing sensor node operating system
by adding only a few lines of code in specific operating sys-
tem functions. No changes are needed to the applications or
network protocols.

The rest of this paper is structured as follows. We present
our energy estimation mechanism in Section 2 and its im-
plementation in Contiki in Section 3. We discuss calibration
in Section 4. We evaluate the mechanism in Section 5 and
review related work in Section 6. We discuss future work in
Section 7 and conclude the paper in Section 8.

2. ON-LINE NODE-LEVEL ENERGY
ESTIMATION

To conserve energy, sensor nodes frequently switch on and
off their components, such as the communication device,
LEDs, or sensors. Our energy estimation mechanism is in-
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Figure 1: Left: measured current draw. Middle: energy consumption over time, calculated by integrating

the left figure. Right: estimated energy consumption over time, obtained from the on-line energy estimation

mechanism.

voked every time a hardware component is switched on or
off. When a component is switched on, the estimation mech-
anism stores a time stamp. As the component is switched
off again, a time difference is produced and added to the
total time that the component has been turned on. The es-
timation mechanism keeps a list of all components and the
time of which they have been turned on. The mechanism
then uses the current draw of each component to produce
an estimate of the total energy consumption.

2.1 Example
Figure 1 shows the operation of the energy estimation

mechanism. The left graph shows the measured current
draw for a part of a typical sensing application. The appli-
cation turns on the on-board temperature sensor and reads
its value (1.5s - 2.5s). It then turns on the radio for one
second to listen for any incoming traffic before it sends its
sensor reading to its neighbor (2.5s - 3.5s). After sending its
value, it signals that it is alive by blinking the green LED
for half a second (3.5s - 4s). The middle graph shows the
energy consumption and is obtained by integration of the
left graph.

The right graph in Figure 1 shows the estimated energy
consumption of the above activity, as obtained from our
on-line energy estimation mechanism. As the mechanism
estimates the energy consumption only when a component
is turned off, the graph shows jumps when the components
are powered down. The energy consumption of the CPU
is estimated every time the processor is switched from low
power mode to normal mode, and therefore shows up as an
increasing line. The saw tooth-pattern in the right graph
is due to the intervals at which the energy estimate was
sampled.

2.2 Energy Model
The on-line energy estimation mechanism uses a linear

model for the sensor node energy consumption. The total
energy consumption E is defined as

E

V
= Imtm + Iltl + Ittt + Irtr +

X

i

Ici
tci

, (1)

where V is the supply voltage, Im the current draw of the
microprocessor when running, tm the time in which the mi-
croprocessor has been running, Il and tl the current draw
and the time of the microprocessor in low power mode, It

and tt the current draw and the time of the communication

device in transmit mode, Ir and tr the current draw and
time of the communication device in receive mode, and Ici

and tci
the current draw and time of other components such

as sensors and LEDs. The energy model does not contain a
term for the idle current draw of the board itself; this is em-
bedded in the low power mode draw of the microprocessor.

In many cases, the voltage V does not need to be ex-
plicitly computed, as the energy estimate often is used only
for comparison between different nodes. If all nodes have
the same voltage, computed E/V values can be compared
directly, without the need of a multiplication operation.

3. IMPLEMENTATION
The implementation of the on-line energy estimation mech-

anism requires only small changes to existing operating sys-
tem source code. We have implemented the mechanism in
the Contiki operating system [2] but the mechanism can
easily be incorporated into other sensor node operating sys-
tems.

The energy estimation module maintains a table with en-
tries for all components, the CPU, and the radio transceiver.
Each table entry contains the total time that the correspond-
ing component has been turned on.

Energy estimation is implemented in two lines of code
in the device driver for the hardware for which energy is
to be estimated. When the component is turned on, the
energy estimation module is called to produce a time stamp.
When the component is turned off, the time difference from
when the component was turned on is computed. The time
difference is added to the table entry for the component. To
add energy estimation to an existing device driver, only two
lines of code needs to be added.

Time measurement is implemented using the on-chip timers
of the MSP430. Since the on-chip timers work even when
the microcontroller is in low-power mode, the time measure-
ment is non-intrusive. We use the 32768 Hz clock divided
by 8, producing 4096 clock ticks per second.

4. CALIBRATION
To be able to accurately estimate the energy, the estima-

tion mechanism must know the current draw for the micro-
processor, communication device, and the components to
be used in Equation 1. Calibration is performed by off-line
measurement of the current draw for the sensor board using
an oscilloscope. The average current draw for the different
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Figure 2: The estimated energy in the last packet

before node failure. Ideally, the estimated energy

should be the same regardless of program.

parts of the board is then used as input to the estimation
mechanism.

5. EVALUATION
To evaluate the efficiency of the on-line energy estimation

mechanism, we use the method developed by Ritter el al. [8]
where ESB sensor nodes [9] are equipped with 1F capacitors.
The capacitors have a predictable energy storage and energy
dissipation rate [11]. The capacitor is charged by turning on
the power switch on the sensor node, which causes the bat-
tery to be connected to the capacitor. When the battery
is switched off, the node runs on the energy contained in
the capacitor. The energy stored in the capacitor can power
the ESB node for a few minutes, depending on the energy
consumption of the software running on the node. The pro-
gram shown in Figure 1 runs for about four minutes from
the energy in the capacitor.

We use two different ESB nodes and run all experiments
on both nodes. We run three different programs that emu-
late a standard sensor network application using the sensors,
turning the radio and LEDs on and off at regular intervals,
and sending data packets over the radio. The intervals for
the three programs are configured to be different.

In addition to turning components on and off, the sensor
node transmits its estimated energy consumption via radio
once every two seconds. The node runs until it dies. We
define the lifetime of the node to be the time until the node
sends its last packet. A base station node listens to the radio
traffic and sends it via a serial cable to a PC, which logs the
data to a file.

5.1 Estimation Accuracy
To evaluate the energy estimation accuracy, we run the

three programs on capacitor-equipped ESB nodes and cap-
ture the estimated energy that the nodes transmits over the
radio. Ideally, the nodes should report the same energy es-
timate in the last packet they transmit before they die. The
choice of program should not affect the estimated energy.

Figure 2 shows the energy estimate in the last packet
before node failure. The figure shows that the estimated
energy varies both between programs and within each pro-

Table 1: Code and memory footprint.

Code Memory
Module (bytes) (bytes)
Book keeping 54 48
Summation 340 0

gram. This is due to the low precision of the experimental
evaluation mechanism, which involves a fair amount of man-
ual intervention. For example, we need to manually turn on
and off the nodes to charge and discharge the capacitor. We
plan to investigate validation mechanisms with higher pre-
cision [3] as part of future work.

5.2 Overhead of the Estimation Mechanism
The energy estimation mechanism measures and stores

the time during which hardware components have been turned
on. The mechanism therefore incurs an overhead in terms
of processing power. However, the code required to measure
and store the time is very small; only 11 processor cycles to
store a time stamp before turning on the hardware compo-
nent and 20 processor cycles to update the total time after
the component has been switched off. We measured the
number of times the time stamping code was invoked in the
data collection case study below and found that, on the av-
erage, the time stamping code was run 60 times per second.
This incurs an overhead of approximately 1800 cycles per
second, or 0.7% of the total processing time. The energy
overhead of these few extra cycles is negligible.

The code footprint and memory requirements of the mech-
anism are small, as shown in Table 1. The book keeping
module keeps track of how long the components have been
turned on. The summation module calculates Equation 1
and must be altered depending on the calibrated parameters
for the particular hardware device on which the mechanism
is executed.

5.3 Case Study: X-MAC
As an example of how our energy estimation mechanism is

intended to be used, we estimate the energy overhead of the
X-MAC duty-cycling radio protocol [1] using the software-
based on-line energy estimation mechanism.

The X-MAC protocol switches on and off the radio at
regular intervals to conserve the energy of the sensor node.
When a node is to send a packet, it first broadcasts a train
of short strobe packets. When the other nodes hear a strobe
packet, it turns on its radio in preparation of receiving a full
packet. As an optimization for unicast packets, the strobe
packets include the address of the receiver of the full packet.
When the receiver hears the strobe packet, it immediately
sends a short acknowledgement packet to the sender of the
strobe packets. The sender can then immediately send its
full packet. All other nodes that overhear the packets can
turn off their radios until the full packet has been transmit-
ted.

In this case study, we are interested in experimentally
evaluating the unicast-packet optimization of X-MAC. We
implement the X-MAC protocol in Contiki and setup a data
collection network consisting of nine Tmote Sky nodes. One
node acts as a base station; it collects the data from the
network, and writes it to a PC. The other eight nodes are
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Figure 3: The estimated power consumption of eight nodes running the Contiki data collection protocol with

X-MAC. The left graph is without the unicast optimization and the right graph with optimization. The

power is normalized to the maximum Tmote Sky power consumption.

arranged so that they form a two-hop network. The data
collection protocol sends energy estimates produced by the
energy estimation mechanism. We configure the X-MAC
protocol to have a duty cycle of approximately 9%, based
on the estimated number of packets per second and the an-
alytical results calculated by the authors of X-MAC [1].

The estimated energy is shown in Figure 3. The left graph
shows the estimated energy without the unicast optimiza-
tion and the right graph the estimated energy with the op-
timization. We see that the optimization is able to obtain a
significant reduction in energy consumption. Furthermore,
we see that idle listening is dominating the total energy con-
sumption.

Finally, we see that the energy consumption of nodes 2
and 5 is significantly higher than the energy consumption
of the other nodes. This is because those nodes happened
to route packets for the two-hop nodes in our experiment.
This behavior would have been difficult to find if we would
have measured the energy of a single node only. We take
this as an indication that a systems perspective is useful
when evaluating the energy consumption of sensor network
protocols.

6. RELATED WORK
Jiang et al. [3] show that the unique characteristics of

sensor network applications make it difficult to measure the
energy consumption of sensor nodes. The authors develop
a hardware-based mechanism for measuring the energy con-
sumption of sensor nodes that they expect to have a per-unit
cost similar to that of the sensor node. It therefore incurs
a significantly higher cost than software-based energy es-
timation. However, hardware-based mechanisms are able
to capture phenomena such as per-node fluctuations in en-
ergy consumption that are not possible to study using our
software-based mechanism. We expect both hardware-based
and software-based methods to be used in the future.

Operating systems for wireless sensor networks such as
TinyOS, SOS, Mantis, and Contiki, reduce their energy con-
sumption by powering off the microcontroller and hardware
components when they are not used. Our work is orthogonal

to this; on-line energy estimation estimates the actual en-
ergy consumption of the devices rather than trying to reduce
the energy consumption.

Younis and Fahmy [12] use a linear model for on-line esti-
mation of node-level energy consumption, but do not evalu-
ate the mechanism’s effectiveness. Furthermore, their model
requires all applications to be explicitly rewritten to esti-
mate their own energy consumption. In contrast, our model
does not require any modifications to applications or net-
work protocols.

There are many sensor network simulators with energy es-
timation abilities [4, 5]. However, simulators are run off-line
and cannot estimate the energy consumption in an on-line
sensor network. Unlike off-line emulation, on-line energy
estimation makes it possible to do energy-aware decisions
about routing and transmission power scheduling, which po-
tentially can prolong sensor node lifetime [6, 10, 13].

Landsiedel, Wehrle, and Götz [4] estimate the energy con-
sumption of TinyOS-based systems using an off-line emula-
tor. Our work is different in that it does on-line energy
estimation. The off-line emulation must accurately capture
the time in the processor is awake, and significant effort
is devoted to doing accurate time emulation. With on-line
energy estimation, time measurements can be directly ob-
tained from on-chip timers provided by the microprocessor.
Furthermore, the effects of interrupts and timers, that need
to be carefully emulated in an off-line estimator, are au-
tomatically included in the energy estimates obtained with
on-line estimation.

The need for network-level energy monitoring in sensor
networks is discussed by Zhao, Govindan, and Estrin [13].
Their work addresses the problem of transmitting node en-
ergy levels across the network. The monitoring mechanism,
which is developed for a significantly larger target platform
than ours, assumes the existence of a mechanism for mea-
suring or estimating the node-level energy, such as ACPI.
Our work addresses the problem of providing a way to esti-
mate node-level energy, even for devices without ACPI, and
is thus orthogonal to their work.



7. FUTURE WORK
The results presented in this paper are only initial results

and more experiments are needed to fully validate software-
based on-line energy estimation. We see at least three pos-
sible directions for future work, as described below.

Battery model integration. The on-line energy estimation
mechanism tries to estimate the energy consumption of the
sensor board. However, for battery-powered sensor boards
this cannot be directly translated into a life time estimate
of the sensor node because of the non-linearity of batteries.
Nevertheless, it might be possible to extend the model from
Equation 1 to take non-linear battery effects into consider-
ation to obtain life time predictions based on past energy
consumption.

Non-linearity of the energy consumption of hardware com-
ponents. Hardware effects can sometimes cause non-linear
behavior of the current draw so that the current draw for two
components is not the sum of the current draw of the indi-
vidual components. The linear model in Equation 1 cannot
capture such behavior. Also, the current implementation of
the model measures individual components without taking
other components into consideration. It would be interest-
ing to study how to integrate non-linear current draw effects
into the present model and its implementation.

Validation of the model with hardware energy measure-
ment. Recent work has shown that hardware-based energy
measurement for sensor nodes is difficult, but not impos-
sible [3]. It would be interesting to compare the results
of software-based on-line energy estimation with hardware-
based energy measurements.

8. CONCLUSIONS
In this paper we present a software-based on-line energy

estimation mechanism for tiny sensor nodes. The mecha-
nism is easy to implement in a sensor node operating system
and does not require any changes to applications or network
protocols. By experimentally correlating the estimated en-
ergy and the life time of real sensor nodes, we show that
the energy estimation mechanism is sound, but that further
study is needed to accurately quantify the error rate of the
mechanism. Finally, we use the mechanism to empirically
study the energy consumption of the X-MAC protocol.
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