/* Copyright (c) 2009, Swedish Institute of Computer Science * All rights reserved. * * Additional fixes for AVR contributed by: * * Colin O'Flynn coflynn@newae.com * Eric Gnoske egnoske@gmail.com * Blake Leverett bleverett@gmail.com * Mike Vidales mavida404@gmail.com * Kevin Brown kbrown3@uccs.edu * Nate Bohlmann nate@elfwerks.com * David Kopf dak664@embarqmail.com * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * */ /** * \addtogroup wireless * @{ */ /** * \defgroup hal RF230 hardware level drivers * @{ */ /** * \file * This file contains low-level radio driver code. * This version is optimized for use with the "barebones" RF230bb driver, * which communicates directly with the contiki core MAC layer. * It is optimized for speed at the expense of generality. */ /*============================ INCLUDE =======================================*/ #include #include "hal.h" #include "at86rf230_registermap.h" /*============================ MACROS ========================================*/ /* * Macros defined for the radio transceiver's access modes. * * These functions are implemented as macros since they are used very often. */ #define HAL_DUMMY_READ (0x00) /**< Dummy value for the SPI. */ #define HAL_TRX_CMD_RW (0xC0) /**< Register Write (short mode). */ #define HAL_TRX_CMD_RR (0x80) /**< Register Read (short mode). */ #define HAL_TRX_CMD_FW (0x60) /**< Frame Transmit Mode (long mode). */ #define HAL_TRX_CMD_FR (0x20) /**< Frame Receive Mode (long mode). */ #define HAL_TRX_CMD_SW (0x40) /**< SRAM Write. */ #define HAL_TRX_CMD_SR (0x00) /**< SRAM Read. */ #define HAL_TRX_CMD_RADDRM (0x3F) /**< Register Address Mask. */ #define HAL_CALCULATED_CRC_OK (0) /**< CRC calculated over the frame including the CRC field should be 0. */ /*============================ TYPDEFS =======================================*/ /*============================ VARIABLES =====================================*/ /** \brief This is a file internal variable that contains the 16 MSB of the * system time. * * The system time (32-bit) is the current time in microseconds. For the * AVR microcontroller implementation this is solved by using a 16-bit * timer (Timer1) with a clock frequency of 1MHz. The hal_system_time is * incremented when the 16-bit timer overflows, representing the 16 MSB. * The timer value it self (TCNT1) is then the 16 LSB. * * \see hal_get_system_time */ static uint16_t hal_system_time = 0; volatile extern signed char rf230_last_rssi; /*Flag section.*/ //static uint8_t volatile hal_bat_low_flag; /**< BAT_LOW flag. */ //static uint8_t volatile hal_pll_lock_flag; /**< PLL_LOCK flag. */ /*Callbacks.*/ /** \brief This function is called when a rx_start interrupt is signaled. * * If this function pointer is set to something else than NULL, it will * be called when a RX_START event is signaled. The function takes two * parameters: timestamp in IEEE 802.15.4 symbols (16 us resolution) and * frame length. The event handler will be called in the interrupt domain, * so the function must be kept short and not be blocking! Otherwise the * system performance will be greatly degraded. * * \see hal_set_rx_start_event_handler */ //static hal_rx_start_isr_event_handler_t rx_start_callback; /** \brief This function is called when a trx_end interrupt is signaled. * * If this function pointer is set to something else than NULL, it will * be called when a TRX_END event is signaled. The function takes one * parameter: timestamp in IEEE 802.15.4 symbols (16 us resolution). * The event handler will be called in the interrupt domain, * so the function must not block! * * \see hal_set_trx_end_event_handler */ //static hal_trx_end_isr_event_handler_t trx_end_callback; /*============================ PROTOTYPES ====================================*/ /*============================ IMPLEMENTATION ================================*/ #if defined(__AVR__) /* * AVR with hardware SPI tranfers (TODO: move to hw spi hal for avr cpu) */ #include #include #define HAL_SPI_TRANSFER_OPEN() { \ HAL_ENTER_CRITICAL_REGION(); \ HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */ #define HAL_SPI_TRANSFER_WRITE(to_write) (SPDR = (to_write)) #define HAL_SPI_TRANSFER_WAIT() ({while ((SPSR & (1 << SPIF)) == 0) {;}}) /* gcc extension, alternative inline function */ #define HAL_SPI_TRANSFER_READ() (SPDR) #define HAL_SPI_TRANSFER_CLOSE() \ HAL_SS_HIGH(); /* End the transaction by pulling the Slave Select High. */ \ HAL_LEAVE_CRITICAL_REGION(); \ } #define HAL_SPI_TRANSFER(to_write) ( \ HAL_SPI_TRANSFER_WRITE(to_write), \ HAL_SPI_TRANSFER_WAIT(), \ HAL_SPI_TRANSFER_READ() ) #else /* __AVR__ */ /* * Other SPI architecture (parts to core, parts to m16c6Xp */ #include "contiki-mulle.h" // MULLE_ENTER_CRITICAL_REGION // Software SPI transfers #define HAL_SPI_TRANSFER_OPEN() { uint8_t spiTemp; \ HAL_ENTER_CRITICAL_REGION(); \ HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */ #define HAL_SPI_TRANSFER_WRITE(to_write) (spiTemp = spiWrite(to_write)) #define HAL_SPI_TRANSFER_WAIT() ({0;}) #define HAL_SPI_TRANSFER_READ() (spiTemp) #define HAL_SPI_TRANSFER_CLOSE() \ HAL_SS_HIGH(); /* End the transaction by pulling the Slave Select High. */ \ HAL_LEAVE_CRITICAL_REGION(); \ } #define HAL_SPI_TRANSFER(to_write) (spiTemp = spiWrite(to_write)) inline uint8_t spiWrite(uint8_t byte) { uint8_t data = 0; uint8_t mask = 0x80; do { if( (byte & mask) != 0 ) HAL_PORT_MOSI |= (1 << HAL_MOSI_PIN); //call MOSI.set(); else HAL_PORT_MOSI &= ~(1 << HAL_MOSI_PIN); //call MOSI.clr(); if( (HAL_PORT_MISO & (1 << HAL_MISO_PIN)) > 0) //call MISO.get() ) data |= mask; HAL_PORT_SCK &= ~(1 << HAL_SCK_PIN); //call SCLK.clr(); HAL_PORT_SCK |= (1 << HAL_SCK_PIN); //call SCLK.set(); } while( (mask >>= 1) != 0 ); return data; } #endif /* !__AVR__ */ /** \brief This function initializes the Hardware Abstraction Layer. */ #if defined(__AVR__) #define HAL_RF230_ISR() ISR(RADIO_VECT) #define HAL_TIME_ISR() ISR(TIMER1_OVF_vect) #define HAL_TICK_UPCNT() (TCNT1) void hal_init(void) { /*Reset variables used in file.*/ hal_system_time = 0; // hal_reset_flags(); /*IO Specific Initialization - sleep and reset pins. */ DDR_SLP_TR |= (1 << SLP_TR); /* Enable SLP_TR as output. */ DDR_RST |= (1 << RST); /* Enable RST as output. */ /*SPI Specific Initialization.*/ /* Set SS, CLK and MOSI as output. */ HAL_DDR_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK) | (1 << HAL_DD_MOSI); HAL_PORT_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK); /* Set SS and CLK high */ /* Run SPI at max speed */ SPCR = (1 << SPE) | (1 << MSTR); /* Enable SPI module and master operation. */ SPSR = (1 << SPI2X); /* Enable doubled SPI speed in master mode. */ /*TIMER1 Specific Initialization.*/ TCCR1B = HAL_TCCR1B_CONFIG; /* Set clock prescaler */ TIFR1 |= (1 << ICF1); /* Clear Input Capture Flag. */ HAL_ENABLE_OVERFLOW_INTERRUPT(); /* Enable Timer1 overflow interrupt. */ hal_enable_trx_interrupt(); /* Enable interrupts from the radio transceiver. */ } #else /* __AVR__ */ #define HAL_RF230_ISR() M16C_INTERRUPT(M16C_INT1) #define HAL_TIME_ISR() M16C_INTERRUPT(M16C_TMRB4) #define HAL_TICK_UPCNT() (0xFFFF-TB4) // TB4 counts down so we need to convert it to upcounting void hal_init(void) { /*Reset variables used in file.*/ hal_system_time = 0; // hal_reset_flags(); /*IO Specific Initialization - sleep and reset pins. */ DDR_SLP_TR |= (1 << SLP_TR); /* Enable SLP_TR as output. */ DDR_RST |= (1 << RST); /* Enable RST as output. */ /*SPI Specific Initialization.*/ /* Set SS, CLK and MOSI as output. */ HAL_DDR_SS |= (1 << HAL_SS_PIN); HAL_DDR_SCK |= (1 << HAL_SCK_PIN); HAL_DDR_MOSI |= (1 << HAL_MOSI_PIN); HAL_DDR_MISO &= ~(1 << HAL_MISO_PIN); /* Set SS */ HAL_PORT_SS |= (1 << HAL_SS_PIN); // HAL_SS_HIGH() HAL_PORT_SCK &= ~(1 << HAL_SCK_PIN); // SCLK.clr() /*TIMER Specific Initialization.*/ // Init count source (Timer B3) TB3 = ((16*10) - 1); // 16 us ticks TB3MR.BYTE = 0b00000000; // Timer mode, F1 TBSR.BIT.TB3S = 1; // Start Timer B3 TB4 = 0xFFFF; // TB4MR.BYTE = 0b10000001; // Counter mode, count TB3 TBSR.BIT.TB4S = 1; // Start Timer B4 INT1IC.BIT.POL = 1; // Select rising edge HAL_ENABLE_OVERFLOW_INTERRUPT(); /* Enable Timer overflow interrupt. */ hal_enable_trx_interrupt(); /* Enable interrupts from the radio transceiver. */ } #endif /* !__AVR__ */ /*----------------------------------------------------------------------------*/ /** \brief This function reset the interrupt flags and interrupt event handlers * (Callbacks) to their default value. */ //void //hal_reset_flags(void) //{ // HAL_ENTER_CRITICAL_REGION(); /* Reset Flags. */ // hal_bat_low_flag = 0; // hal_pll_lock_flag = 0; /* Reset Associated Event Handlers. */ // rx_start_callback = NULL; // trx_end_callback = NULL; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief This function returns the current value of the BAT_LOW flag. * * The BAT_LOW flag is incremented each time a BAT_LOW event is signaled from the * radio transceiver. This way it is possible for the end user to poll the flag * for new event occurances. */ //uint8_t //hal_get_bat_low_flag(void) //{ // return hal_bat_low_flag; //} /*----------------------------------------------------------------------------*/ /** \brief This function clears the BAT_LOW flag. */ //void //hal_clear_bat_low_flag(void) //{ // HAL_ENTER_CRITICAL_REGION(); // hal_bat_low_flag = 0; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief This function is used to set new TRX_END event handler, overriding * old handler reference. */ //hal_trx_end_isr_event_handler_t //hal_get_trx_end_event_handler(void) //{ // return trx_end_callback; //} /*----------------------------------------------------------------------------*/ /** \brief This function is used to set new TRX_END event handler, overriding * old handler reference. */ //void //hal_set_trx_end_event_handler(hal_trx_end_isr_event_handler_t trx_end_callback_handle) //{ // HAL_ENTER_CRITICAL_REGION(); // trx_end_callback = trx_end_callback_handle; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief Remove event handler reference. */ //void //hal_clear_trx_end_event_handler(void) //{ // HAL_ENTER_CRITICAL_REGION(); // trx_end_callback = NULL; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief This function returns the active RX_START event handler * * \return Current RX_START event handler registered. */ //hal_rx_start_isr_event_handler_t //hal_get_rx_start_event_handler(void) //{ // return rx_start_callback; //} /*----------------------------------------------------------------------------*/ /** \brief This function is used to set new RX_START event handler, overriding * old handler reference. */ //void //hal_set_rx_start_event_handler(hal_rx_start_isr_event_handler_t rx_start_callback_handle) //{ // HAL_ENTER_CRITICAL_REGION(); // rx_start_callback = rx_start_callback_handle; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief Remove event handler reference. */ //void //hal_clear_rx_start_event_handler(void) //{ // HAL_ENTER_CRITICAL_REGION(); // rx_start_callback = NULL; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief This function returns the current value of the PLL_LOCK flag. * * The PLL_LOCK flag is incremented each time a PLL_LOCK event is signaled from the * radio transceiver. This way it is possible for the end user to poll the flag * for new event occurances. */ //uint8_t //hal_get_pll_lock_flag(void) //{ // return hal_pll_lock_flag; //} /*----------------------------------------------------------------------------*/ /** \brief This function clears the PLL_LOCK flag. */ //void //hal_clear_pll_lock_flag(void) //{ // HAL_ENTER_CRITICAL_REGION(); // hal_pll_lock_flag = 0; // HAL_LEAVE_CRITICAL_REGION(); //} /*----------------------------------------------------------------------------*/ /** \brief This function reads data from one of the radio transceiver's registers. * * \param address Register address to read from. See datasheet for register * map. * * \see Look at the at86rf230_registermap.h file for register address definitions. * * \returns The actual value of the read register. */ uint8_t hal_register_read(uint8_t address) { /* Add the register read command to the register address. */ address &= HAL_TRX_CMD_RADDRM; address |= HAL_TRX_CMD_RR; uint8_t register_value = 0; HAL_SPI_TRANSFER_OPEN(); /*Send Register address and read register content.*/ register_value = HAL_SPI_TRANSFER(address); // dummy read register_value = HAL_SPI_TRANSFER(register_value); // dummy write HAL_SPI_TRANSFER_CLOSE(); return register_value; } /*----------------------------------------------------------------------------*/ /** \brief This function writes a new value to one of the radio transceiver's * registers. * * \see Look at the at86rf230_registermap.h file for register address definitions. * * \param address Address of register to write. * \param value Value to write. */ void hal_register_write(uint8_t address, uint8_t value) { /* Add the Register Write command to the address. */ address = HAL_TRX_CMD_RW | (HAL_TRX_CMD_RADDRM & address); HAL_SPI_TRANSFER_OPEN(); /*Send Register address and write register content.*/ uint8_t dummy_read = HAL_SPI_TRANSFER(address); dummy_read = HAL_SPI_TRANSFER(value); HAL_SPI_TRANSFER_CLOSE(); } /*----------------------------------------------------------------------------*/ /** \brief This function reads the value of a specific subregister. * * \see Look at the at86rf230_registermap.h file for register and subregister * definitions. * * \param address Main register's address. * \param mask Bit mask of the subregister. * \param position Bit position of the subregister * \retval Value of the read subregister. */ uint8_t hal_subregister_read(uint8_t address, uint8_t mask, uint8_t position) { /* Read current register value and mask out subregister. */ uint8_t register_value = hal_register_read(address); register_value &= mask; register_value >>= position; /* Align subregister value. */ return register_value; } /*----------------------------------------------------------------------------*/ /** \brief This function writes a new value to one of the radio transceiver's * subregisters. * * \see Look at the at86rf230_registermap.h file for register and subregister * definitions. * * \param address Main register's address. * \param mask Bit mask of the subregister. * \param position Bit position of the subregister * \param value Value to write into the subregister. */ void hal_subregister_write(uint8_t address, uint8_t mask, uint8_t position, uint8_t value) { /* Read current register value and mask area outside the subregister. */ uint8_t register_value = hal_register_read(address); register_value &= ~mask; /* Start preparing the new subregister value. shift in place and mask. */ value <<= position; value &= mask; value |= register_value; /* Set the new subregister value. */ /* Write the modified register value. */ hal_register_write(address, value); } /*----------------------------------------------------------------------------*/ /** \brief This function will upload a frame from the radio transceiver's frame * buffer. * * If the frame currently available in the radio transceiver's frame buffer * is out of the defined bounds. Then the frame length, lqi value and crc * be set to zero. This is done to indicate an error. * This version is optimized for use with contiki RF230BB driver. * The callback routine and CRC are left out for speed in reading the rx buffrer . * * \param rx_frame Pointer to the data structure where the frame is stored. * \param rx_callback Pointer to callback function for receiving one byte at a time. */ void //hal_frame_read(hal_rx_frame_t *rx_frame, rx_callback_t rx_callback) hal_frame_read(hal_rx_frame_t *rx_frame) { uint8_t *rx_data; /* check that we have either valid frame pointer or callback pointer */ // if (!rx_frame && !rx_callback) // return; HAL_SPI_TRANSFER_OPEN(); /*Send frame read command.*/ (void)HAL_SPI_TRANSFER(HAL_TRX_CMD_FR); /*Read frame length. This includes the checksum. */ uint8_t frame_length = HAL_SPI_TRANSFER(0); /*Check for correct frame length.*/ if ((frame_length >= HAL_MIN_FRAME_LENGTH) && (frame_length <= HAL_MAX_FRAME_LENGTH)){ // uint16_t crc = 0; // if (rx_frame){ rx_data = (rx_frame->data); rx_frame->length = frame_length; // } else { // rx_callback(frame_length); // } /*Upload frame buffer to data pointer */ HAL_SPI_TRANSFER_WRITE(0); HAL_SPI_TRANSFER_WAIT(); do{ *rx_data++ = HAL_SPI_TRANSFER_READ(); HAL_SPI_TRANSFER_WRITE(0); // if (rx_frame){ // *rx_data++ = tempData; // } else { // rx_callback(tempData); // } /* RF230 does crc in hardware, doing the checksum here ensures the rx buffer has not been overwritten by the next packet */ /* Since doing the checksum makes such overwrites more probable, we skip it and hope for the best. */ /* A full buffer should be read in 320us at 2x spi clocking, so with a low interrupt latency overwrites should not occur */ // crc = _crc_ccitt_update(crc, tempData); HAL_SPI_TRANSFER_WAIT(); } while (--frame_length > 0); /*Read LQI value for this frame.*/ // if (rx_frame){ rx_frame->lqi = HAL_SPI_TRANSFER_READ(); // } else { // rx_callback(HAL_SPI_TRANSFER_READ()); // } /*Check calculated crc, and set crc field in hal_rx_frame_t accordingly.*/ // if (rx_frame){ rx_frame->crc = 1; // } else { // rx_callback(crc != HAL_CALCULATED_CRC_OK); // } } else { // if (rx_frame){ rx_frame->length = 0; rx_frame->lqi = 0; rx_frame->crc = false; // } } HAL_SPI_TRANSFER_CLOSE(); } /*----------------------------------------------------------------------------*/ /** \brief This function will download a frame to the radio transceiver's frame * buffer. * * \param write_buffer Pointer to data that is to be written to frame buffer. * \param length Length of data. The maximum length is 127 bytes. */ void hal_frame_write(uint8_t *write_buffer, uint8_t length) { length &= HAL_TRX_CMD_RADDRM; /* Truncate length to maximum frame length. */ HAL_SPI_TRANSFER_OPEN(); /*SEND FRAME WRITE COMMAND AND FRAME LENGTH.*/ uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_FW); dummy_read = HAL_SPI_TRANSFER(length); /* Download to the Frame Buffer. */ /* Note an autogenerated FCS is inserted into the last two bytes, so there is no * need to transfer them to the buffer */ do{ dummy_read = HAL_SPI_TRANSFER(*write_buffer++); } while (--length > 2); HAL_SPI_TRANSFER_CLOSE(); } /*----------------------------------------------------------------------------*/ /** \brief Read SRAM * * This function reads from the SRAM of the radio transceiver. * * \param address Address in the TRX's SRAM where the read burst should start * \param length Length of the read burst * \param data Pointer to buffer where data is stored. */ //void //hal_sram_read(uint8_t address, uint8_t length, uint8_t *data) //{ // HAL_SPI_TRANSFER_OPEN(); /*Send SRAM read command.*/ // uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_SR); /*Send address where to start reading.*/ // dummy_read = HAL_SPI_TRANSFER(address); /*Upload the chosen memory area.*/ // do{ // *data++ = HAL_SPI_TRANSFER(HAL_DUMMY_READ); // } while (--length > 0); // HAL_SPI_TRANSFER_CLOSE(); //} /*----------------------------------------------------------------------------*/ /** \brief Write SRAM * * This function writes into the SRAM of the radio transceiver. * * \param address Address in the TRX's SRAM where the write burst should start * \param length Length of the write burst * \param data Pointer to an array of bytes that should be written */ //void //hal_sram_write(uint8_t address, uint8_t length, uint8_t *data) //{ // HAL_SPI_TRANSFER_OPEN(); /*Send SRAM write command.*/ // uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_SW); /*Send address where to start writing to.*/ // dummy_read = HAL_SPI_TRANSFER(address); /*Upload the chosen memory area.*/ // do{ // dummy_read = HAL_SPI_TRANSFER(*data++); // } while (--length > 0); // HAL_SPI_TRANSFER_CLOSE(); //} /*----------------------------------------------------------------------------*/ /* This #if compile switch is used to provide a "standard" function body for the */ /* doxygen documentation. */ #if defined(DOXYGEN) /** \brief ISR for the radio IRQ line, triggered by the input capture. * This is the interrupt service routine for timer1.ICIE1 input capture. * It is triggered of a rising edge on the radio transceivers IRQ line. */ void RADIO_VECT(void); #else /* !DOXYGEN */ /* These link to the RF230BB driver in rf230.c */ void rf230_interrupt(void); extern hal_rx_frame_t rxframe; /* rf230interruptflag can be printed in the main idle loop for debugging */ #define DEBUG 0 #if DEBUG volatile char rf230interruptflag; #define INTERRUPTDEBUG(arg) rf230interruptflag=arg #else #define INTERRUPTDEBUG(arg) #endif HAL_RF230_ISR() { /*The following code reads the current system time. This is done by first reading the hal_system_time and then adding the 16 LSB directly from the hardware counter. */ // uint32_t isr_timestamp = hal_system_time; // isr_timestamp <<= 16; // isr_timestamp |= HAL_TICK_UPCNT(); // TODO: what if this wraps after reading hal_system_time? volatile uint8_t state; uint8_t interrupt_source; /* used after HAL_SPI_TRANSFER_OPEN/CLOSE block */ INTERRUPTDEBUG(1); /* Using SPI bus from ISR is generally a bad idea... */ /* Note: all IRQ are not always automatically disabled when running in ISR */ HAL_SPI_TRANSFER_OPEN(); /*Read Interrupt source.*/ /*Send Register address and read register content.*/ HAL_SPI_TRANSFER_WRITE(RG_IRQ_STATUS | HAL_TRX_CMD_RR); /* This is the second part of the convertion of system time to a 16 us time base. The division is moved here so we can spend less time waiting for SPI data. */ // isr_timestamp /= HAL_US_PER_SYMBOL; /* Divide so that we get time in 16us resolution. */ // isr_timestamp &= HAL_SYMBOL_MASK; HAL_SPI_TRANSFER_WAIT(); /* AFTER possible interleaved processing */ interrupt_source = HAL_SPI_TRANSFER_READ(); /* The interrupt variable is used as a dummy read. */ interrupt_source = HAL_SPI_TRANSFER(interrupt_source); HAL_SPI_TRANSFER_CLOSE(); /*Handle the incomming interrupt. Prioritized.*/ if ((interrupt_source & HAL_RX_START_MASK)){ INTERRUPTDEBUG(10); /* Save RSSI for this packet if not in extended mode, scaling to 1dB resolution */ #if !RF230_CONF_AUTOACK #if 0 // 3-clock shift and add is faster on machines with no hardware multiply rf230_last_rssi = hal_subregister_read(SR_RSSI); rf230_last_rssi = (rf230_last_rssi <<1) + rf230_last_rssi; #else // Faster with 1-clock multiply. Raven and Jackdaw have 2-clock multiply so same speed while saving 2 bytes of program memory rf230_last_rssi = 3 * hal_subregister_read(SR_RSSI); #endif #endif // if(rx_start_callback != NULL){ // /* Read Frame length and call rx_start callback. */ // HAL_SPI_TRANSFER_OPEN(); // uint8_t frame_length = HAL_SPI_TRANSFER(HAL_TRX_CMD_FR); // frame_length = HAL_SPI_TRANSFER(frame_length); // HAL_SPI_TRANSFER_CLOSE(); // rx_start_callback(isr_timestamp, frame_length); // } } else if (interrupt_source & HAL_TRX_END_MASK){ INTERRUPTDEBUG(11); // if(trx_end_callback != NULL){ // trx_end_callback(isr_timestamp); // } state = hal_subregister_read(SR_TRX_STATUS); if((state == BUSY_RX_AACK) || (state == RX_ON) || (state == BUSY_RX) || (state == RX_AACK_ON)){ /* Received packet interrupt */ /* Buffer the frame and call rf230_interrupt to schedule poll for rf230 receive process */ // if (rxframe.length) break; //toss packet if last one not processed yet if (rxframe.length) INTERRUPTDEBUG(42); else INTERRUPTDEBUG(12); #ifdef RF230_MIN_RX_POWER /* Discard packets weaker than the minimum if defined. This is for testing miniature meshes.*/ /* Save the rssi for printing in the main loop */ #if RF230_CONF_AUTOACK rf230_last_rssi=hal_subregister_read(SR_ED_LEVEL); #endif if (rf230_last_rssi >= RF230_MIN_RX_POWER) { #endif hal_frame_read(&rxframe); rf230_interrupt(); // trx_end_callback(isr_timestamp); #ifdef RF230_MIN_RX_POWER } #endif #if 0 /* Enable reception of next packet */ #if RF230_CONF_AUTOACK hal_subregister_write(SR_TRX_CMD, RX_AACK_ON); #else hal_subregister_write(SR_TRX_CMD, RX_ON); #endif #endif } } else if (interrupt_source & HAL_TRX_UR_MASK){ INTERRUPTDEBUG(13); ; } else if (interrupt_source & HAL_PLL_UNLOCK_MASK){ INTERRUPTDEBUG(14); ; } else if (interrupt_source & HAL_PLL_LOCK_MASK){ INTERRUPTDEBUG(15); // hal_pll_lock_flag++; ; } else if (interrupt_source & HAL_BAT_LOW_MASK){ /* Disable BAT_LOW interrupt to prevent endless interrupts. The interrupt */ /* will continously be asserted while the supply voltage is less than the */ /* user-defined voltage threshold. */ uint8_t trx_isr_mask = hal_register_read(RG_IRQ_MASK); trx_isr_mask &= ~HAL_BAT_LOW_MASK; hal_register_write(RG_IRQ_MASK, trx_isr_mask); // hal_bat_low_flag++; /* Increment BAT_LOW flag. */ INTERRUPTDEBUG(16); ; } else { INTERRUPTDEBUG(99); ; } } # endif /* defined(DOXYGEN) */ /*----------------------------------------------------------------------------*/ /* This #if compile switch is used to provide a "standard" function body for the */ /* doxygen documentation. */ #if defined(DOXYGEN) /** \brief Timer Overflow ISR * This is the interrupt service routine for timer1 overflow. */ void TIMER1_OVF_vect(void); #else /* !DOXYGEN */ HAL_TIME_ISR() { hal_system_time++; } #endif /** @} */ /** @} */ /*EOF*/