/* * Copyright (c) 2015, Zolertia - http://www.zolertia.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /*---------------------------------------------------------------------------*/ /** * \addtogroup zoul-tsl2563-sensor * @{ * * \file * Driver for the external TSL2563 light sensor * * \author * Antonio Lignan * Toni Lozano */ /*---------------------------------------------------------------------------*/ #include "contiki.h" #include "dev/i2c.h" #include "dev/gpio.h" #include "dev/zoul-sensors.h" #include "lib/sensors.h" #include "tsl2563.h" /*---------------------------------------------------------------------------*/ #define DEBUG 0 #if DEBUG #define PRINTF(...) printf(__VA_ARGS__) #else #define PRINTF(...) #endif /*---------------------------------------------------------------------------*/ #define TSL2563_INT_PORT_BASE GPIO_PORT_TO_BASE(I2C_INT_PORT) #define TSL2563_INT_PIN_MASK GPIO_PIN_MASK(I2C_INT_PIN) /*---------------------------------------------------------------------------*/ static uint8_t enabled; static uint8_t gain; static uint8_t timming; /*---------------------------------------------------------------------------*/ void (*tsl2563_int_callback)(uint8_t value); /*---------------------------------------------------------------------------*/ static uint16_t calculate_lux(uint8_t *buf) { uint32_t ch0, ch1, chscale = 0; uint32_t ratio = 0; uint32_t lratio, tmp = 0; uint16_t buffer[2]; /* The calculations below assume the integration time is 402ms and the gain * is 16x (nominal), if not then it is required to normalize the reading * before converting to lux */ buffer[0] = (buf[1] << 8 | (buf[0])); buffer[1] = (buf[3] << 8 | (buf[2])); switch(timming) { case TSL2563_TIMMING_INTEG_402MS: chscale = (1 << CH_SCALE); break; case TSL2563_TIMMING_INTEG_101MS: chscale = CHSCALE_TINT1; break; case TSL2563_TIMMING_INTEG_13_7MS: chscale = CHSCALE_TINT0; break; } if(!gain) { chscale = chscale << 4; } ch0 = (buffer[0] * chscale) >> CH_SCALE; ch1 = (buffer[1] * chscale) >> CH_SCALE; if(ch0 > 0) { ratio = (ch1 << CH_SCALE); ratio = ratio / ch0; } lratio = (ratio + 1) >> 1; if((lratio >= 0) && (lratio <= K1T)) { tmp = (ch0 * B1T) - (ch1 * M1T); } else if(lratio <= K2T) { tmp = (ch0 * B2T) - (ch1 * M2T); } else if(lratio <= K3T) { tmp = (ch0 * B3T) - (ch1 * M3T); } else if(lratio <= K4T) { tmp = (ch0 * B4T) - (ch1 * M4T); } else if(lratio <= K5T) { tmp = (ch0 * B5T) - (ch1 * M5T); } else if(lratio <= K6T) { tmp = (ch0 * B6T) - (ch1 * M6T); } else if(lratio <= K7T) { tmp = (ch0 * B7T) - (ch1 * M7T); } else if(lratio > K8T) { tmp = (ch0 * B8T) - (ch1 * M8T); } if(tmp < 0) { tmp = 0; } tmp += (1 << (LUX_SCALE - 1)); return tmp >> LUX_SCALE; } /*---------------------------------------------------------------------------*/ static int tsl2563_read_reg(uint8_t reg, uint8_t *buf, uint8_t regNum) { i2c_master_enable(); if(i2c_single_send(TSL2563_ADDR, reg) == I2C_MASTER_ERR_NONE) { while(i2c_master_busy()); if(i2c_burst_receive(TSL2563_ADDR, buf, regNum) == I2C_MASTER_ERR_NONE) { return TSL2563_SUCCESS; } } return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ static int tsl2563_write_reg(uint8_t *buf, uint8_t num) { if((buf == NULL) || (num <= 0)) { PRINTF("TSL2563: invalid write values\n"); return TSL2563_ERROR; } i2c_master_enable(); if(i2c_burst_send(TSL2563_ADDR, buf, num) == I2C_MASTER_ERR_NONE) { return TSL2563_SUCCESS; } return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ static int tsl2563_on(void) { uint8_t buf[2]; buf[0] = (TSL2563_COMMAND + TSL2563_CONTROL); buf[1] = TSL2563_CONTROL_POWER_ON; if(tsl2563_write_reg(buf, 2) == I2C_MASTER_ERR_NONE) { if(i2c_single_receive(TSL2563_ADDR, &buf[0]) == I2C_MASTER_ERR_NONE) { if((buf[0] & 0x0F) == TSL2563_CONTROL_POWER_ON) { PRINTF("TSL2563: powered on\n"); return TSL2563_SUCCESS; } } } PRINTF("TSL2563: failed to power on\n"); return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ static int tsl2563_id_register(uint8_t *buf) { if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_ID_REG), buf, 1) == TSL2563_SUCCESS) { PRINTF("TSL2563: partnum/revnum 0x%02X\n", *buf); return TSL2563_SUCCESS; } return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ static int tsl2563_off(void) { uint8_t buf[2]; buf[0] = (TSL2563_COMMAND + TSL2563_CONTROL); buf[1] = TSL2563_CONTROL_POWER_OFF; if(tsl2563_write_reg(buf, 2) == I2C_MASTER_ERR_NONE) { PRINTF("TSL2563: powered off\n"); return TSL2563_SUCCESS; } PRINTF("TSL2563: failed to power off\n"); return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ static int tsl2563_clear_interrupt(void) { uint8_t buf = (TSL2563_COMMAND + TSL2563_CLEAR_INTERRUPT); if(tsl2563_write_reg(&buf, 1) != I2C_MASTER_ERR_NONE) { PRINTF("TSL2563: failed to clear the interrupt\n"); return TSL2563_ERROR; } return TSL2563_SUCCESS; } /*---------------------------------------------------------------------------*/ static int tsl2563_read_sensor(uint16_t *lux) { uint8_t buf[4]; /* This is hardcoded to use word write/read operations */ if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_D0LOW), &buf[0], 2) == TSL2563_SUCCESS) { if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_D1LOW), &buf[2], 2) == TSL2563_SUCCESS) { PRINTF("TSL2563: CH0 0x%02X%02X CH1 0x%02X%02X\n", buf[1], buf[0], buf[3], buf[2]); *lux = calculate_lux(buf); return TSL2563_SUCCESS; } } PRINTF("TSL2563: failed to read\n"); return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ PROCESS(tsl2563_int_process, "TSL2563 interrupt process handler"); /*---------------------------------------------------------------------------*/ PROCESS_THREAD(tsl2563_int_process, ev, data) { PROCESS_EXITHANDLER(); PROCESS_BEGIN(); while(1) { PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL); tsl2563_clear_interrupt(); tsl2563_int_callback(0); } PROCESS_END(); } /*---------------------------------------------------------------------------*/ static void tsl2563_interrupt_handler(uint8_t port, uint8_t pin) { /* There's no alert/interruption flag to check, clear the interruption by * writting to the CLEAR bit in the COMMAND register */ process_poll(&tsl2563_int_process); } /*---------------------------------------------------------------------------*/ static int configure(int type, int value) { uint8_t buf[3]; if((type != TSL2563_ACTIVE) && (type != TSL2563_INT_OVER) && (type != TSL2563_INT_BELOW) && (type != TSL2563_INT_DISABLE) && (type != TSL2563_TIMMING_CFG)) { PRINTF("TSL2563: invalid start value\n"); return TSL2563_ERROR; } /* As default the power-on values of the sensor are gain 1X, 402ms integration * time (not nominal), with manual control disabled */ if(type == TSL2563_ACTIVE) { if(value) { i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN, I2C_SCL_NORMAL_BUS_SPEED); /* Initialize interrupts handlers */ tsl2563_int_callback = NULL; /* Power on the sensor and check for the part number */ if(tsl2563_on() == TSL2563_SUCCESS) { if(tsl2563_id_register(&buf[0]) == TSL2563_SUCCESS) { if((buf[0] & TSL2563_ID_PARTNO_MASK) == TSL2563_EXPECTED_PARTNO) { /* Read the timming/gain configuration */ if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_TIMMING), &buf[0], 1) == TSL2563_SUCCESS) { gain = buf[0] & TSL2563_TIMMING_GAIN; timming = buf[0] & TSL2563_TIMMING_INTEG_MASK; PRINTF("TSL2563: enabled, timming %u gain %u\n", timming, gain); /* Restart the over interrupt threshold */ buf[0] = (TSL2563_COMMAND + TSL2563_THRHIGHLOW); buf[1] = 0xFF; buf[2] = 0xFF; if(tsl2563_write_reg(buf, 3) != TSL2563_SUCCESS) { PRINTF("TSL2563: failed to clear over interrupt\n"); return TSL2563_ERROR; } /* Restart the below interrupt threshold */ buf[0] = (TSL2563_COMMAND + TSL2563_THRLOWLOW); buf[1] = 0x00; buf[2] = 0x00; if(tsl2563_write_reg(buf, 3) != TSL2563_SUCCESS) { PRINTF("TSL2563: failed to clear below interrupt\n"); return TSL2563_ERROR; } /* Clear any pending interrupt */ if(tsl2563_clear_interrupt() == TSL2563_SUCCESS) { enabled = 1; return TSL2563_SUCCESS; } } } } } return TSL2563_ERROR; } else { if(tsl2563_off() == TSL2563_SUCCESS) { PRINTF("TSL2563: stopped\n"); enabled = 0; return TSL2563_SUCCESS; } return TSL2563_ERROR; } } if(!enabled) { PRINTF("TSL2563: sensor not started\n"); return TSL2563_ERROR; } if(type == TSL2563_INT_DISABLE) { /* Ensure the GPIO doesn't generate more interrupts, this may affect others * I2C digital sensors using the bus and sharing this pin, so an user may * comment the line below */ GPIO_DISABLE_INTERRUPT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); /* This also wipes out the persistance value, to be reconfigured when * enabling back the interruption */ buf[0] = (TSL2563_COMMAND + TSL2563_INTERRUPT); buf[1] = TSL2563_INTR_DISABLED; if(tsl2563_write_reg(buf, 2) != TSL2563_SUCCESS) { PRINTF("TSL2563: failed to disable the interrupt\n"); return TSL2563_ERROR; } return TSL2563_SUCCESS; } /* Configure the timming and gain */ if(type == TSL2563_TIMMING_CFG) { if((value != TSL2563_G16X_402MS) && (value != TSL2563_G1X_402MS) && (value != TSL2563_G1X_101MS) && (value != TSL2563_G1X_13_7MS)) { PRINTF("TSL2563: invalid timming configuration values\n"); return TSL2563_ERROR; } buf[0] = (TSL2563_COMMAND + TSL2563_TIMMING); buf[1] = value; if(tsl2563_write_reg(buf, 2) == TSL2563_SUCCESS) { if(value == TSL2563_G16X_402MS) { gain = 1; } switch(value) { case TSL2563_G16X_402MS: case TSL2563_G1X_402MS: timming = TSL2563_TIMMING_INTEG_402MS; break; case TSL2563_G1X_101MS: timming = TSL2563_TIMMING_INTEG_101MS; break; case TSL2563_G1X_13_7MS: timming = TSL2563_TIMMING_INTEG_13_7MS; break; } PRINTF("TSL2563: new timming %u gain %u\n", timming, gain); return TSL2563_SUCCESS; } PRINTF("TSL2563: failed to configure timming\n"); return TSL2563_ERROR; } /* From here we handle the interrupt configuration, it requires the interrupt * callback handler to have been previously set using the TSL2563_REGISTER_INT * macro */ buf[1] = ((uint8_t *)&value)[0]; buf[2] = ((uint8_t *)&value)[1]; if(type == TSL2563_INT_OVER) { buf[0] = (TSL2563_COMMAND + TSL2563_THRHIGHLOW); } else if(type == TSL2563_INT_BELOW) { buf[0] = (TSL2563_COMMAND + TSL2563_THRLOWLOW); } if(tsl2563_write_reg(buf, 3) != TSL2563_SUCCESS) { PRINTF("TSL2563: failed to set interrupt level\n"); return TSL2563_ERROR; } /* Now configure the interruption register (level interrupt, 2 integration * cycles after threshold has been reached (roughly 804ms if timming is 402ms) */ buf[0] = (TSL2563_COMMAND + TSL2563_INTERRUPT); buf[1] = (TSL2563_INTR_LEVEL << TSL2563_INTR_SHIFT); buf[1] += TSL2563_INT_PERSIST_2_CYCLES; if(tsl2563_write_reg(buf, 2) != TSL2563_SUCCESS) { PRINTF("TSL2563: failed to enable interrupt\n"); return TSL2563_ERROR; } /* Configure the interrupts pins */ GPIO_SOFTWARE_CONTROL(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); GPIO_SET_INPUT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); /* Pull-up resistor, detect falling edge */ GPIO_DETECT_EDGE(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); GPIO_TRIGGER_SINGLE_EDGE(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); GPIO_DETECT_FALLING(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); gpio_register_callback(tsl2563_interrupt_handler, I2C_INT_PORT, I2C_INT_PIN); /* Spin process until an interrupt is received */ process_start(&tsl2563_int_process, NULL); /* Enable interrupts */ GPIO_ENABLE_INTERRUPT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK); /* The RE-Mote revision A has this pin shared and with a pull-down resistor, * for other platforms (like the firefly), change to enable pull-up internal * resistor instead if no external pull-up is present. */ ioc_set_over(I2C_INT_PORT, I2C_INT_PIN, IOC_OVERRIDE_PUE); nvic_interrupt_enable(I2C_INT_VECTOR); PRINTF("TSL2563: Interrupt configured\n"); return TSL2563_SUCCESS; } /*---------------------------------------------------------------------------*/ static int status(int type) { switch(type) { case SENSORS_ACTIVE: case SENSORS_READY: return enabled; } return 0; } /*---------------------------------------------------------------------------*/ static int value(int type) { uint16_t lux; if(!enabled) { PRINTF("TSL2563: sensor not started\n"); return TSL2563_ERROR; } if(type == TSL2563_VAL_READ) { if(tsl2563_read_sensor(&lux) != TSL2563_ERROR) { return lux; } PRINTF("TSL2563: fail to read\n"); } return TSL2563_ERROR; } /*---------------------------------------------------------------------------*/ SENSORS_SENSOR(tsl2563, TSL2563_SENSOR, value, configure, status); /*---------------------------------------------------------------------------*/ /** @} */