/* * Copyright (c) 2015, Zolertia - http://www.zolertia.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /*---------------------------------------------------------------------------*/ /** * \addtogroup zoul-bmpx8x-sensor * @{ * * BMP085/BMP180 driver implementation * * \file * Driver for the external BMP085/BMP180 atmospheric pressure sensor * * \author * Antonio Lignan */ /*---------------------------------------------------------------------------*/ #include "contiki.h" #include "dev/i2c.h" #include "dev/gpio.h" #include "dev/zoul-sensors.h" #include "lib/sensors.h" #include "bmpx8x.h" /*---------------------------------------------------------------------------*/ #define DEBUG 0 #if DEBUG #define PRINTF(...) printf(__VA_ARGS__) #else #define PRINTF(...) #endif /*---------------------------------------------------------------------------*/ static uint8_t enabled = 0; /*---------------------------------------------------------------------------*/ typedef struct { int16_t ac1; int16_t ac2; int16_t ac3; uint16_t ac4; uint16_t ac5; uint16_t ac6; int16_t b1; int16_t b2; int16_t mb; int16_t mc; int16_t md; } bmpx8x_calibration_values; typedef struct { uint8_t oversampling_mode; int32_t b5; bmpx8x_calibration_values calib; } bmpx8x_config; static bmpx8x_config bmpx8x_values; /*---------------------------------------------------------------------------*/ static int bmpx8x_read_reg(uint8_t reg, uint8_t *buf, uint8_t num) { if((buf == NULL) || (num <= 0)) { PRINTF("BMPx8x: invalid read values\n"); return BMPx8x_ERROR; } i2c_master_enable(); if(i2c_single_send(BMPx8x_ADDR, reg) == I2C_MASTER_ERR_NONE) { while(i2c_master_busy()); if(i2c_burst_receive(BMPx8x_ADDR, buf, num) == I2C_MASTER_ERR_NONE) { return BMPx8x_SUCCESS; } } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int bmpx8x_write_reg(uint8_t *buf, uint8_t num) { if((buf == NULL) || (num <= 0)) { PRINTF("BMPx8x: invalid write values\n"); return BMPx8x_ERROR; } i2c_master_enable(); if(i2c_burst_send(BMPx8x_ADDR, buf, num) == I2C_MASTER_ERR_NONE) { return BMPx8x_SUCCESS; } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_calib(void) { uint8_t buf[BMPx8x_CALIB_TABLE_SIZE]; if(bmpx8x_read_reg(BMPx8x_AC1_CALIB, buf, BMPx8x_CALIB_TABLE_SIZE) == BMPx8x_SUCCESS) { /* MSB first */ bmpx8x_values.calib.ac1 = ((buf[0] << 8) + buf[1]); bmpx8x_values.calib.ac2 = ((buf[2] << 8) + buf[3]); bmpx8x_values.calib.ac3 = ((buf[4] << 8) + buf[5]); bmpx8x_values.calib.ac4 = ((buf[6] << 8) + buf[7]); bmpx8x_values.calib.ac5 = ((buf[8] << 8) + buf[9]); bmpx8x_values.calib.ac6 = ((buf[10] << 8) + buf[11]); bmpx8x_values.calib.b1 = ((buf[12] << 8) + buf[13]); bmpx8x_values.calib.b2 = ((buf[14] << 8) + buf[15]); bmpx8x_values.calib.mb = ((buf[16] << 8) + buf[17]); bmpx8x_values.calib.mc = ((buf[18] << 8) + buf[19]); bmpx8x_values.calib.md = ((buf[20] << 8) + buf[21]); return BMPx8x_SUCCESS; } PRINTF("BMPx8x: failed to read calibration\n"); return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_uncompensated_pressure(int32_t *pressure) { uint8_t buf[3]; uint16_t delay; int32_t upres; buf[0] = BMPx8x_CTRL_REG; switch(bmpx8x_values.oversampling_mode) { case BMPx8x_MODE_ULTRA_LOW_POWER: buf[1] = BMPx8x_CTRL_REG_PRESS_4_5MS; delay = BMPx8x_DELAY_4_5MS; break; case BMPx8x_MODE_STANDARD: buf[1] = BMPx8x_CTRL_REG_PRESS_7_5MS; delay = BMPx8x_DELAY_7_5MS; break; case BMPx8x_MODE_HIGH_RES: buf[1] = BMPx8x_CTRL_REG_PRESS_13_5MS; delay = BMPx8x_DELAY_13_5MS; break; case BMPx8x_MODE_ULTRA_HIGH_RES: buf[1] = BMPx8x_CTRL_REG_PRESS_25_5MS; delay = BMPx8x_DELAY_25_5MS; break; default: return BMPx8x_ERROR; } if(bmpx8x_write_reg(buf, 2) == BMPx8x_SUCCESS) { clock_delay_usec(delay); if(bmpx8x_read_reg(BMPx8x_DATA_MSB, buf, 3) == BMPx8x_SUCCESS) { upres = (buf[0] << 16) + (buf[1] << 8) + buf[2]; *pressure = (upres >> (8 - bmpx8x_values.oversampling_mode)); return BMPx8x_SUCCESS; } } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_uncompensated_temperature(int32_t *temp) { uint8_t buf[2]; buf[0] = BMPx8x_CTRL_REG; buf[1] = BMPx8x_CTRL_REG_TEMP; if(bmpx8x_write_reg(buf, 2) == BMPx8x_SUCCESS) { clock_delay_usec(BMPx8x_DELAY_4_5MS); if(bmpx8x_read_reg(BMPx8x_DATA_MSB, buf, 2) == BMPx8x_SUCCESS) { *temp = (int32_t)((buf[0] << 8) + buf[1]); return BMPx8x_SUCCESS; } } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_temperature(int16_t *temp) { int32_t ut = 0; int32_t x1, x2; if(bmpx8x_read_uncompensated_temperature(&ut) == BMPx8x_ERROR) { return BMPx8x_ERROR; } x1 = ((int32_t)ut - (int32_t)bmpx8x_values.calib.ac6) * (int32_t)bmpx8x_values.calib.ac5 >> 15; x2 = ((int32_t)bmpx8x_values.calib.mc << 11) / (x1 + bmpx8x_values.calib.md); bmpx8x_values.b5 = x1 + x2; *temp = (int16_t)((bmpx8x_values.b5 + 8) >> 4); return BMPx8x_SUCCESS; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_pressure(int32_t *pressure) { int32_t ut = 0; int32_t up = 0; int32_t x1, x2, b6, x3, b3, p; uint32_t b4, b7; if(bmpx8x_read_uncompensated_pressure(&up) == BMPx8x_ERROR) { return BMPx8x_ERROR; } if(bmpx8x_read_uncompensated_temperature(&ut) == BMPx8x_ERROR) { return BMPx8x_ERROR; } b6 = bmpx8x_values.b5 - 4000; x1 = (bmpx8x_values.calib.b2 * (b6 * b6 >> 12)) >> 11; x2 = bmpx8x_values.calib.ac2 * b6 >> 11; x3 = x1 + x2; b3 = ((((int32_t)bmpx8x_values.calib.ac1) * 4 + x3) + 2) >> 2; x1 = (bmpx8x_values.calib.ac3 * b6) >> 13; x2 = (bmpx8x_values.calib.b1 * ((b6 * b6) >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (bmpx8x_values.calib.ac4 * ((uint32_t)(x3 + 32768))) >> 15; b7 = ((uint32_t)up - b3) * 50000; if(b7 < 0x80000000) { p = (b7 << 1) / b4; } else { p = (b7 / b4) << 1; } x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; *pressure = (p + ((x1 + x2 + 3791) >> 4)); *pressure /= 10; return BMPx8x_SUCCESS; } /*---------------------------------------------------------------------------*/ static int configure(int type, int value) { if((type != BMPx8x_ACTIVE) && (type != BMPx8x_OVERSAMPLING)) { PRINTF("BMPx8x: invalid start value\n"); return BMPx8x_ERROR; } if(type == BMPx8x_ACTIVE) { if(value) { i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN, I2C_SCL_NORMAL_BUS_SPEED); /* Read the calibration values */ if(bmpx8x_read_calib() != BMPx8x_ERROR) { PRINTF("BMPx8x: sensor started\n"); enabled = 1; bmpx8x_values.oversampling_mode = BMPx8x_MODE_ULTRA_LOW_POWER; return BMPx8x_SUCCESS; } PRINTF("BMPx8x: failed to enable\n"); return BMPx8x_ERROR; } else { enabled = 0; return BMPx8x_SUCCESS; } } else if(type == BMPx8x_OVERSAMPLING) { if((value < BMPx8x_MODE_ULTRA_LOW_POWER) || (value > BMPx8x_MODE_ULTRA_HIGH_RES)) { PRINTF("BMPx8x: invalid oversampling value\n"); return BMPx8x_ERROR; } bmpx8x_values.oversampling_mode = value; return BMPx8x_SUCCESS; } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int status(int type) { switch(type) { case SENSORS_ACTIVE: case SENSORS_READY: return enabled; } return 0; } /*---------------------------------------------------------------------------*/ static int bmpx8x_read_sensor(int32_t *value, uint8_t type) { int16_t temp = 0; /* The temperature is required to compensate the pressure value */ if(bmpx8x_read_temperature(&temp) != BMPx8x_SUCCESS) { return BMPx8x_ERROR; } switch(type) { case BMPx8x_READ_PRESSURE: return bmpx8x_read_pressure(value); case BMPx8x_READ_TEMP: *value = (int16_t) temp; return BMPx8x_SUCCESS; } return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ static int value(int type) { int32_t value; if(!enabled) { PRINTF("BMPx8x: sensor not started\n"); return BMPx8x_ERROR; } if((type != BMPx8x_READ_PRESSURE) && (type != BMPx8x_READ_TEMP)) { PRINTF("BMPx8x: invalid read value\n"); return BMPx8x_ERROR; } if(bmpx8x_read_sensor(&value, type) == BMPx8x_SUCCESS) { return (int)value; } PRINTF("BMPx8x: fail to read\n"); return BMPx8x_ERROR; } /*---------------------------------------------------------------------------*/ SENSORS_SENSOR(bmpx8x, BMPx8x_SENSOR, value, configure, status); /*---------------------------------------------------------------------------*/ /** @} */