/* * Copyright (c) 2011, Matthias Kovatsch and other contributors. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. */ /** * \file * Erbium (Er) PIR REST Engine example (with CoAP-specific code) * \author * Matthias Kovatsch * Harald Pichler */ #include #include #include #include "contiki.h" #include "contiki-net.h" #include #ifdef OSDPLUG #define PLATFORM_HAS_LED 1 //#define PLATFORM_HAS_BUTTON 1 #define PLATFORM_HAS_OPTRIAC 1 #define PLATFORM_HAS_TEMPERATURE 1 #define PLATFORM_HAS_BATTERY 1 #endif #if (defined (OSDLIGHT) || defined (OSDSHUTTER)) #define PLATFORM_HAS_LED 1 #define PLATFORM_HAS_BUTTON 1 #define PLATFORM_HAS_OPTRIAC 1 #define PLATFORM_HAS_TEMPERATURE 1 #define PLATFORM_HAS_BATTERY 1 #endif /* Define which resources to include to meet memory constraints. */ #define REST_RES_MODEL 1 #define REST_RES_NAME 1 #define REST_RES_SW 1 #define REST_RES_RESET 1 #define REST_RES_TIMER 1 #define REST_RES_OPTRIAC 1 #define REST_RES_TEMPERATURE 1 #define REST_RES_EVENT 0 #define REST_RES_LED 1 #define REST_RES_BATTERY 1 #include "erbium.h" #include "pcintkey.h" #include "statusled.h" #if defined (PLATFORM_HAS_BUTTON) #include "dev/button-sensor.h" #endif #if defined (PLATFORM_HAS_LED) #include "dev/leds.h" #endif #if defined (PLATFORM_HAS_OPTRIAC) #include "dev/optriac-sensor.h" #endif #if defined (PLATFORM_HAS_TEMPERATURE) #include "dev/temperature-sensor.h" #endif #if defined (PLATFORM_HAS_BATTERY) #include "dev/battery-sensor.h" #endif /* For CoAP-specific example: not required for normal RESTful Web service. */ #if WITH_COAP == 3 #include "er-coap-03.h" #elif WITH_COAP == 7 #include "er-coap-07.h" #elif WITH_COAP == 12 #include "er-coap-12.h" #elif WITH_COAP == 13 #include "er-coap-13.h" #else #warning "Erbium example without CoAP-specifc functionality" #endif /* CoAP-specific example */ #define DEBUG 1 #if DEBUG #define PRINTF(...) printf(__VA_ARGS__) #define PRINT6ADDR(addr) PRINTF("[%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x]", ((uint8_t *)addr)[0], ((uint8_t *)addr)[1], ((uint8_t *)addr)[2], ((uint8_t *)addr)[3], ((uint8_t *)addr)[4], ((uint8_t *)addr)[5], ((uint8_t *)addr)[6], ((uint8_t *)addr)[7], ((uint8_t *)addr)[8], ((uint8_t *)addr)[9], ((uint8_t *)addr)[10], ((uint8_t *)addr)[11], ((uint8_t *)addr)[12], ((uint8_t *)addr)[13], ((uint8_t *)addr)[14], ((uint8_t *)addr)[15]) #define PRINTLLADDR(lladdr) PRINTF("[%02x:%02x:%02x:%02x:%02x:%02x]",(lladdr)->addr[0], (lladdr)->addr[1], (lladdr)->addr[2], (lladdr)->addr[3],(lladdr)->addr[4], (lladdr)->addr[5]) #else #define PRINTF(...) #define PRINT6ADDR(addr) #define PRINTLLADDR(addr) #endif /******************************************************************************/ uint8_t g_triac_a = 0; uint8_t g_triac_b = 0; /******************************************************************************/ #if REST_RES_MODEL /* * Resources are defined by the RESOURCE macro. * Signature: resource name, the RESTful methods it handles, and its URI path (omitting the leading slash). */ RESOURCE(model, METHOD_GET, "p/model", "title=\"model\";rt=\"simple.dev.mdl\""); /* * A handler function named [resource name]_handler must be implemented for each RESOURCE. * A buffer for the response payload is provided through the buffer pointer. Simple resources can ignore * preferred_size and offset, but must respect the REST_MAX_CHUNK_SIZE limit for the buffer. * If a smaller block size is requested for CoAP, the REST framework automatically splits the data. */ void model_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { char message[100]; int index = 0; int length = 0; /* |<-------->| */ /* Some data that has the length up to REST_MAX_CHUNK_SIZE. For more, see the chunk resource. */ // jSON Format #ifdef OSDPLUG index += sprintf(message + index,"{\n \"model\" : \"PingThePlug\"\n"); #endif #ifdef OSDLIGHT index += sprintf(message + index,"{\n \"model\" : \"Light-Actor\"\n"); #endif #ifdef OSDSHUTTER index += sprintf(message + index,"{\n \"model\" : \"Shutter-Control\n"); #endif index += sprintf(message + index,"}\n"); length = strlen(message); memcpy(buffer, message,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); } #endif /******************************************************************************/ #if REST_RES_SW /* * Resources are defined by the RESOURCE macro. * Signature: resource name, the RESTful methods it handles, and its URI path (omitting the leading slash). */ RESOURCE(sw, METHOD_GET, "p/sw", "title=\"Software Version\";rt=\"simple.dev.sv\""); /* * A handler function named [resource name]_handler must be implemented for each RESOURCE. * A buffer for the response payload is provided through the buffer pointer. Simple resources can ignore * preferred_size and offset, but must respect the REST_MAX_CHUNK_SIZE limit for the buffer. * If a smaller block size is requested for CoAP, the REST framework automatically splits the data. */ void sw_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { char message[100]; int index = 0; int length = 0; /* |<-------->| */ /* Some data that has the length up to REST_MAX_CHUNK_SIZE. For more, see the chunk resource. */ // jSON Format index += sprintf(message + index,"{\n \"sw\" : \"V0.9\"\n"); index += sprintf(message + index,"}\n"); length = strlen(message); memcpy(buffer, message,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); } #endif /******************************************************************************/ #if REST_RES_NAME /* * Resources are defined by the RESOURCE macro. * Signature: resource name, the RESTful methods it handles, and its URI path (omitting the leading slash). */ RESOURCE(name, METHOD_POST | METHOD_GET, "p/name", "title=\"name\";rt=\"simple.dev.n\""); /* eeprom space */ #define P_NAME "Testboard" #define P_NAME_MAX 17 uint8_t eemem_p_name[P_NAME_MAX] EEMEM = P_NAME; /* * A handler function named [resource name]_handler must be implemented for each RESOURCE. * A buffer for the response payload is provided through the buffer pointer. Simple resources can ignore * preferred_size and offset, but must respect the REST_MAX_CHUNK_SIZE limit for the buffer. * If a smaller block size is requested for CoAP, the REST framework automatically splits the data. */ void name_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { uint8_t eebuffer[32]; char message[100]; int index = 0; int length = 0; /* |<-------->| */ const char *name = NULL; int success = 1; switch(REST.get_method_type(request)){ case METHOD_GET: cli(); eeprom_read_block (eebuffer, &eemem_p_name, sizeof(eemem_p_name)); sei(); /* Some data that has the length up to REST_MAX_CHUNK_SIZE. For more, see the chunk resource. */ // jSON Format index += sprintf(message + index,"{\n \"name\" : \"%s\"\n",eebuffer); index += sprintf(message + index,"}\n"); length = strlen(message); memcpy(buffer, message,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); break; case METHOD_POST: if (success && (length=REST.get_post_variable(request, "name", &name))) { PRINTF("name %s\n", name); if (length < P_NAME_MAX) { memcpy(&eebuffer, name,length); eebuffer[length]=0; cli(); eeprom_write_block(&eebuffer, &eemem_p_name, sizeof(eemem_p_name)); sei(); } else { success = 0; } } else { success = 0; } break; default: success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } #endif /******************************************************************************/ #if REST_RES_TIMER /*A simple actuator example*/ RESOURCE(timer, METHOD_GET | METHOD_POST , "a/timer", "title=\"TIMER, POST timer=XXX\";rt=\"Control\""); /* eeprom space */ #define P_TIMER "60" #define P_TIMER_MAX 10 uint8_t eemem_p_timer[P_TIMER_MAX] EEMEM = P_TIMER; int gtimer_read(){ uint8_t eebuffer[32]; cli(); eeprom_read_block (eebuffer, &eemem_p_timer, sizeof(eemem_p_timer)); sei(); return atoi((const char *)eebuffer); } void timer_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { uint8_t eebuffer[32]; const char *timer = NULL; char message[100]; int length = 0; /* |<-------->| */ int index = 0; int success = 1; switch(REST.get_method_type(request)){ case METHOD_GET: cli(); eeprom_read_block (eebuffer, &eemem_p_timer, sizeof(eemem_p_timer)); sei(); /* Some data that has the length up to REST_MAX_CHUNK_SIZE. For more, see the chunk resource. */ // jSON Format index += sprintf(message + index,"{\n \"timer\" : \"%s\"\n",eebuffer); index += sprintf(message + index,"}\n"); length = strlen(message); memcpy(buffer, message,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); break; case METHOD_POST: if (success && (length=REST.get_post_variable(request, "timer", &timer))) { PRINTF("name %s\n", timer); if (length < P_TIMER_MAX) { memcpy(&eebuffer, timer,length); eebuffer[length]=0; cli(); eeprom_write_block(&eebuffer, &eemem_p_timer, sizeof(eemem_p_timer)); sei(); } else { success = 0; } } else { success = 0; } break; default: success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } #endif /******************************************************************************/ #if REST_RES_RESET /*A simple actuator example*/ RESOURCE(reset, METHOD_GET | METHOD_POST , "p/reset", "title=\"RESET, POST mode=on\";rt=\"Control\""); /* eeprom space */ #define P_RESET "0" #define P_RESET_MAX 10 uint8_t eemem_p_reset[P_RESET_MAX] EEMEM = P_RESET; void reset_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { uint8_t eebuffer[32]; const char *mode = NULL; char message[100]; int length = 0; /* |<-------->| */ int index = 0; int reset = 0; size_t len = 0; int success = 1; switch(REST.get_method_type(request)){ case METHOD_GET: cli(); eeprom_read_block (eebuffer, &eemem_p_reset, sizeof(eemem_p_reset)); sei(); /* Some data that has the length up to REST_MAX_CHUNK_SIZE. For more, see the chunk resource. */ // jSON Format index += sprintf(message + index,"{\n \"reset\" : \"%s\"\n",eebuffer); index += sprintf(message + index,"}\n"); length = strlen(message); memcpy(buffer, message,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); break; case METHOD_POST: if (success && (len=REST.get_post_variable(request, "mode", &mode))) { PRINTF("mode %s\n", mode); if (strncmp(mode, "on", len)==0) { length=strlen(P_NAME); memcpy(&eebuffer, P_NAME,length); eebuffer[length]=0; cli(); eeprom_write_block(&eebuffer, &eemem_p_name, sizeof(eemem_p_name)); sei(); length=strlen(P_TIMER); memcpy(&eebuffer, P_TIMER,length); eebuffer[length]=0; cli(); eeprom_write_block(&eebuffer, &eemem_p_timer, sizeof(eemem_p_timer)); eeprom_read_block (eebuffer, &eemem_p_reset, sizeof(eemem_p_reset)); sei(); reset= atoi((char*)eebuffer) + 1; length=sprintf((char*)eebuffer,"%d",reset); cli(); eeprom_write_block(&eebuffer, &eemem_p_reset, sizeof(eemem_p_reset)); sei(); } else { success = 0; } } else { success = 0; } break; default: success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } #endif /******************************************************************************/ // pcintkey_ext /*A simple actuator example. read the key button status*/ RESOURCE(extbutton, METHOD_GET | METHOD_POST , "s/extbutton", "title=\"ext.Button\";rt=\"Text\""); void extbutton_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { static char bname1[17]="button1"; static char bname2[17]="button2"; static char bname3[17]="button3"; int success = 1; char temp[100]; int index = 0; int length = 0; /* |<-------->| */ const char *name = NULL; size_t len = 0; switch(REST.get_method_type(request)){ case METHOD_GET: // jSON Format index += sprintf(temp + index,"{\n \"%s\" : ",bname1); if(is_button_ext4()) index += sprintf(temp + index,"\"on\",\n"); else index += sprintf(temp + index,"\"off\",\n"); index += sprintf(temp + index,"{\n \"%s\" : ",bname2); if(is_button_ext5()) index += sprintf(temp + index,"\"on\",\n"); else index += sprintf(temp + index,"\"off\",\n"); index += sprintf(temp + index," \"%s\" : ",bname3); if(is_button_ext6()) index += sprintf(temp + index,"\"on\"\n"); else index += sprintf(temp + index,"\"off\"\n"); index += sprintf(temp + index,"}\n"); length = strlen(temp); memcpy(buffer, temp,length ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, length); break; case METHOD_POST: if (success && (len=REST.get_post_variable(request, "name", &name))) { PRINTF("name %s\n", name); memcpy(bname1, name,len); bname1[len]=0; } else { success = 0; } break; default: success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } /******************************************************************************/ #if REST_RES_LED /*A simple actuator example, depending on the color query parameter and post variable mode, corresponding led is activated or deactivated*/ RESOURCE(led1, METHOD_POST | METHOD_PUT , "a/led1", "title=\"LED: POST/PUT mode=on|off\";rt=\"simple.act.led\""); void led1_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { size_t len = 0; const char *mode = NULL; uint8_t led = 0; int success = 1; led = LEDS_RED; if (success && (len=REST.get_post_variable(request, "mode", &mode))) { PRINTF("mode %s\n", mode); if (strncmp(mode, "on", len)==0) { leds_on(led); } else if (strncmp(mode, "off", len)==0) { leds_off(led); } else { success = 0; } } else { success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } /*A simple actuator example, depending on the color query parameter and post variable mode, corresponding led is activated or deactivated*/ RESOURCE(led2, METHOD_POST | METHOD_PUT , "a/led2", "title=\"LED: POST/PUT mode=on|off\";rt=\"simple.act.led\""); void led2_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { size_t len = 0; const char *mode = NULL; int success = 1; if (success && (len=REST.get_post_variable(request, "mode", &mode))) { PRINTF("mode %s\n", mode); if (strncmp(mode, "on", len)==0) { statusled_on(); } else if (strncmp(mode, "off", len)==0) { statusled_off(); } else { success = 0; } } else { success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } #endif /******************************************************************************/ #if (defined PLATFORM_HAS_OPTRIAC) /******************************************************************************/ #if REST_RES_OPTRIAC /*A simple actuator example*/ RESOURCE(optriac, METHOD_GET | METHOD_POST | METHOD_PUT , "a/optriac", "title=\"TRIAC: ?type=a|b, POST/PUT mode=on|off\";rt=\"Control\""); void optriac_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { const char *type = NULL; const char *mode = NULL; static char namea[17]="Triac-a"; static char nameb[17]="Triac-b"; char temp[100]; int index = 0; size_t len = 0; uint8_t triac = 0; int success = 1; switch(REST.get_method_type(request)){ case METHOD_GET: // jSON Format index += sprintf(temp + index,"{\n \"%s\" : ",namea); if(optriac_sensor.value(OPTRIAC_SENSOR_1) == 0) index += sprintf(temp + index,"\"off\",\n"); if(optriac_sensor.value(OPTRIAC_SENSOR_1) == 1) index += sprintf(temp + index,"\"on\",\n"); index += sprintf(temp + index," \"%s\" : ",nameb); if(optriac_sensor.value(OPTRIAC_SENSOR_2) == 0) index += sprintf(temp + index,"\"off\"\n"); if(optriac_sensor.value(OPTRIAC_SENSOR_2) == 1) index += sprintf(temp + index,"\"on\"\n"); index += sprintf(temp + index,"}\n"); len = strlen(temp); memcpy(buffer, temp,len ); REST.set_header_content_type(response, REST.type.APPLICATION_JSON); REST.set_response_payload(response, buffer, len); break; case METHOD_PUT: success = 0; break; case METHOD_POST: if ((len=REST.get_query_variable(request, "type", &type))) { PRINTF("type %.*s\n", len, type); if (strncmp(type, "a", len)==0) { triac = OPTRIAC_SENSOR_1; } else if(strncmp(type,"b", len)==0) { triac = OPTRIAC_SENSOR_2; } else { triac = OPTRIAC_SENSOR_1; } } else { success = 0; } if (success && (len=REST.get_post_variable(request, "mode", &mode))) { PRINTF("mode %s\n", mode); if (strncmp(mode, "on", len)==0) { if (triac == OPTRIAC_SENSOR_1){ g_triac_a = 1; } else { g_triac_b = 1; } } else if (strncmp(mode, "off", len)==0) { if (triac == OPTRIAC_SENSOR_1){ g_triac_a = 0; } else { // Triac B off g_triac_b = 0; } } else { success = 0; } } else { success = 0; } break; default: success = 0; } if (!success) { REST.set_response_status(response, REST.status.BAD_REQUEST); } } #endif /******************************************************************************/ #endif /* PLATFORM_HAS_OPTRIAC */ /******************************************************************************/ #if REST_RES_TEMPERATURE && defined (PLATFORM_HAS_TEMPERATURE) /* A simple getter example. Returns the reading from light sensor with a simple etag */ RESOURCE(temperature, METHOD_GET, "s/cputemp", "title=\"Temperature status\";rt=\"temperature-c\""); void temperature_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { int temperature = temperature_sensor.value(0); const uint16_t *accept = NULL; int num = REST.get_header_accept(request, &accept); if ((num==0) || (num && accept[0]==REST.type.TEXT_PLAIN)) { REST.set_header_content_type(response, REST.type.TEXT_PLAIN); snprintf((char *)buffer, REST_MAX_CHUNK_SIZE, "%d.%02d", temperature/100, temperature % 100); REST.set_response_payload(response, (uint8_t *)buffer, strlen((char *)buffer)); } else if (num && (accept[0]==REST.type.APPLICATION_JSON)) { REST.set_header_content_type(response, REST.type.APPLICATION_JSON); snprintf((char *)buffer, REST_MAX_CHUNK_SIZE, "{'temperature':%d.%02d}", temperature/100, temperature % 100); REST.set_response_payload(response, buffer, strlen((char *)buffer)); } else { REST.set_response_status(response, REST.status.NOT_ACCEPTABLE); const char *msg = "Supporting content-types text/plain and application/json"; REST.set_response_payload(response, msg, strlen(msg)); } } #endif /* PLATFORM_HAS_TEMPERATURE */ /******************************************************************************/ #if REST_RES_BATTERY && defined (PLATFORM_HAS_BATTERY) /* A simple getter example. Returns the reading from light sensor with a simple etag */ RESOURCE(battery, METHOD_GET, "s/battery", "title=\"Battery status\";rt=\"battery-mV\""); void battery_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t *offset) { int battery = battery_sensor.value(0); const uint16_t *accept = NULL; int num = REST.get_header_accept(request, &accept); if ((num==0) || (num && accept[0]==REST.type.TEXT_PLAIN)) { REST.set_header_content_type(response, REST.type.TEXT_PLAIN); snprintf((char *)buffer, REST_MAX_CHUNK_SIZE, "%d.%02d", battery/1000, battery % 1000); REST.set_response_payload(response, (uint8_t *)buffer, strlen((char *)buffer)); } else if (num && (accept[0]==REST.type.APPLICATION_JSON)) { REST.set_header_content_type(response, REST.type.APPLICATION_JSON); snprintf((char *)buffer, REST_MAX_CHUNK_SIZE, "{\"battery\":%d.%02d}", battery/1000, battery % 1000); REST.set_response_payload(response, buffer, strlen((char *)buffer)); } else { REST.set_response_status(response, REST.status.NOT_ACCEPTABLE); const char *msg = "Supporting content-types text/plain and application/json"; REST.set_response_payload(response, msg, strlen(msg)); } } #endif /* PLATFORM_HAS_BATTERY */ /******************************************************************************/ void hw_init() { leds_off(LEDS_RED); statusledinit(); key_init(); } #define MESURE_INTERVAL (CLOCK_SECOND/2) PROCESS(rest_server_example, "Erbium Example Server"); AUTOSTART_PROCESSES(&rest_server_example, &sensors_process); PROCESS_THREAD(rest_server_example, ev, data) { static struct etimer ds_periodic_timer; static struct etimer triac_off_timer; static uint8_t state=0; static int ext4=0; static int ext5=0; static int ext6=0; // ext4 = is_button_ext4(); // ext5 = is_button_ext5(); // ext6 = is_button_ext6(); PROCESS_BEGIN(); PRINTF("Starting Erbium Example Server\n"); #ifdef RF_CHANNEL PRINTF("RF channel: %u\n", RF_CHANNEL); #endif #ifdef IEEE802154_PANID PRINTF("PAN ID: 0x%04X\n", IEEE802154_PANID); #endif PRINTF("uIP buffer: %u\n", UIP_BUFSIZE); PRINTF("LL header: %u\n", UIP_LLH_LEN); PRINTF("IP+UDP header: %u\n", UIP_IPUDPH_LEN); PRINTF("REST max chunk: %u\n", REST_MAX_CHUNK_SIZE); /* if static routes are used rather than RPL */ #if !UIP_CONF_IPV6_RPL && !defined (CONTIKI_TARGET_MINIMAL_NET) && !defined (CONTIKI_TARGET_NATIVE) set_global_address(); configure_routing(); #endif /* Initialize the OSD Hardware. */ hw_init(); /* Initialize the REST engine. */ rest_init_engine(); /* Activate the application-specific resources. */ #if REST_RES_MODEL rest_activate_resource(&resource_model); #endif #if REST_RES_SW rest_activate_resource(&resource_sw); #endif #if REST_RES_NAME rest_activate_resource(&resource_name); #endif #if REST_RES_RESET rest_activate_resource(&resource_reset); #endif #if REST_RES_TIMER rest_activate_resource(&resource_timer); #endif rest_activate_resource(&resource_extbutton); /* Activate the application-specific resources. */ #if REST_RES_OPTRIAC SENSORS_ACTIVATE(optriac_sensor); rest_activate_resource(&resource_optriac); #endif #if defined (PLATFORM_HAS_LED) #if REST_RES_LED rest_activate_resource(&resource_led1); rest_activate_resource(&resource_led2); #endif #endif /* PLATFORM_HAS_LED */ #if defined (PLATFORM_HAS_TEMPERATURE) && REST_RES_TEMPERATURE SENSORS_ACTIVATE(temperature_sensor); rest_activate_resource(&resource_temperature); #endif #if defined (PLATFORM_HAS_BATTERY) && REST_RES_BATTERY SENSORS_ACTIVATE(battery_sensor); rest_activate_resource(&resource_battery); #endif etimer_set(&ds_periodic_timer, MESURE_INTERVAL); /* Define application-specific events here. */ while(1) { PROCESS_WAIT_EVENT(); /* Button Tric Logic */ if(etimer_expired(&ds_periodic_timer)) { PRINTF("Periodic \n"); PRINTF("extb %d %d\n",ext5,ext6); PRINTF("g_triac %d %d\n",g_triac_a,g_triac_b); if( is_button_ext5()) { g_triac_a = 1; } if( is_button_ext6()) { g_triac_b = 1; } #if (defined (OSDSHUTTER)) PRINTF("State: %d\n",state); switch(state) { case 0: if( g_triac_a == 1) { PRINTF("Triac A\n"); g_triac_a = 0; // Triac B off optriac_sensor.configure(OPTRIAC_SENSOR_2,0); statusled_off(); state = 1; } if( g_triac_b == 1) { PRINTF("Triac B\n"); g_triac_b = 0; // Triac A off optriac_sensor.configure(OPTRIAC_SENSOR_1,0); leds_off(LEDS_RED); state = 2; } break; case 1: // Triac A on optriac_sensor.configure(OPTRIAC_SENSOR_1,1); leds_on(LEDS_RED); etimer_set(&triac_off_timer, gtimer_read()*CLOCK_SECOND); state=0; break; case 2: // Triac B on optriac_sensor.configure(OPTRIAC_SENSOR_2,1); statusled_on(); etimer_set(&triac_off_timer, gtimer_read()*CLOCK_SECOND); state=0; break; default: state = 0; } // switch #endif etimer_reset(&ds_periodic_timer); } if(etimer_expired(&triac_off_timer)) { PRINTF("Triac off timer\n"); // Triac A off optriac_sensor.configure(OPTRIAC_SENSOR_1,0); leds_off(LEDS_RED); g_triac_a = 0; // Triac B off optriac_sensor.configure(OPTRIAC_SENSOR_2,0); statusled_off(); g_triac_b = 0; } } /* while (1) */ PROCESS_END(); }