Use the GPIO accessor macros instead of copying raw register access code all
over the place. This is cleaner and less error prone.
This fixes the setting of the USB pull-up resistor that worked only by chance on
the CC2538DK because it is controlled by the pin 0 of the used GPIO port.
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Some peripherals have their clocks automatically gated in PM1+ modes, so they
cannot operate. This new mechanism gives peripherals a way to prohibit PM1+
modes so that they can properly complete their current operations before
entering PM1+.
This mechanism is implemented with peripheral functions registered to the LPM
module. These functions return whether the associated peripheral permits or not
PM1+ modes. They are called by the LPM module each time PM1+ might be possible.
If any of the peripherals wants to block PM1+, then the system is only dropped
to PM0.
Partly from: George Oikonomou
Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
This uses the core/dev/spi.h header and implements the spi_init()
function and the various macros for SPI operation. ssi.h contains all of
the register locations and information.
This implementation is not very versatile, mostly because I don't how to
make it flexible in the contiki system. It supports pin muxing for the
four spi pins, but other than that picks sensible defaults.
The SPI macros (like SPI_READ()) are defined in
cpu/cc2538/spi-arch.h. In order to use the SPI driver, add the following
includes to your project:
#include "spi-arch.h
#include "dev/spi.h"